Circular RNA are one kind of non-coding RNA, charactered by covalently closed rings. They can influence biological functions such as cell transduction and protein synthesis. They are associated with pathogenesis of many diseases and become a novel family of biomarkers. Now we try to introduce the origin, structure, function of circular RNA and the involved research methodology. Furthermore, we primarily discuss their application in the tuberculosis research.
Circular RNA (circRNA) is a non-coding RNA which exists widely in eukaryotic cells with a structure of covalently closed continuous loop. Its generation, characteristics and functions have received extensive attention, making it one of the hot spots in the field of non-coding RNA research. Many studies have found that circRNA plays an important role in the development of various diseases including cardiovascular disease, nervous system disease and cancer. Cardiovascular disease is a worldwide common disease with high incidence and poor prognosis. Its exact pathogenesis has not been found, which blocks the development of cardiovascular disease treatment. In this review, we summarize the loop-forming mechanisms, the functions and the progress of current researches of circRNA in cardiovascular diseases.
Circular RNAs (circRNAs) are a novel class of non-coding RNAs, which are more stable than linear RNAs for their closed circular structure by covalent bond. CircRNAs exist in a large variety of cells and regulate the expressions of target genes. Moreover, circRNAs are closely related to various diseases and have a potential value as biomarkers and prognostic markers clinically. In this article, the classification and biological functions of circRNA molecules (including being as microRNA sponges, regulating gene transcription, regulating RNA binding protein and the potential translation function) are summarized, and the latest research progress of circRNAs in rheumatoid arthritis is reviewed.
Pulmonary fibrosis is a kind of chronic and fibrotic lung disease caused by a variety of reasons, and its main pathological characteristic is excessive scar formation after the destruction of normal lung tissue structure, which eventually leads to respiratory insufficiency. Although the research on the pathophysiological mechanism of pulmonary fibrosis has made great progress, its pathogenesis has not been fully elucidated, and it is still clinically incurable. In recent years, studies have shown that non-coding RNAs are involved in the pathogenesis of pulmonary fibrosis, therefore, this article summarizes the related research progress of non-coding RNA in regulation of pulmonary fibrosis by affecting epithelial-mesenchymal transition, fibroblast activation and function of macrophages, in order to provide new ideas for the treatment of pulmonary fibrosis.