west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Combined culture" 2 results
  • COMPARATIVE STUDY ON COMBINED CULTURE OF HUMAN PLACENTA-DERIVED MESENCHYMAL STEM CELLS AND HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS FROM SAME AND DIFFERENT INDIVIDUALS

    Objective To investigate the protocols of combined culture of human placenta-derived mesenchymal stem cells (HPMSCs) and human umbilical vein endothelial cells (HUVECs) from the same and different individuals on collagen material, to provide the. Methods Under voluntary contributions, HPMSCs were isolated and purified from human full-term placenta using collagenase IV digestion and lymphocyte separation medium, and confirmed by morphology methods and flow cytometry, and then passage 2 cells were cultured under condition of osteogenic induction. HUVECs were isolated from fresh human umbilical vein by collagenase I digestion and subcultured to purification, and cells were confirmed by immunocytochemical staining of von Willebrand factor (vWF). There were 2 groups for experiment. Passage 3 osteoblastic induced HPMSCs were co-cultured with HUVECs (1 ∶ 1) from different individuals in group A and with HUVECs from the same individual in group B on collagen hydrogel. Confocal laser scanning microscope was used to observe the cellular behavior of the cell-collagen composites at 1, 3, 5, and 7 days after culturing. Results Flow cytometry showed that HPMSCs were bly positive for CD90 and CD29, but negative for CD31, CD45, and CD34. After induction, alizarin red, alkaline phosphatase, and collagenase I staining were positive. HUVECs displayed cobble-stone morphology and stained positively for endothelial cell marker vWF. The immunofluorescent staining of CD31 showed that HUVECs in the cell-collagen composite of group B had richer layers, adhered and extended faster and better in three-dimension space than that of group A. At 7 days, the class-like microvessel lengths and the network point numbers were (6.68 ± 0.35) mm/mm2 and (17.10 ± 1.10)/mm2 in group A, and were (8.11 ± 0.62) mm/mm2 and (21.30 ± 1.41)/mm2 in group B, showing significant differences between the 2 groups (t=0.894, P=0.000; t=0.732, P=0.000). Conclusion Composite implant HPMSCs and HUVECs from the same individual on collagen hydrogel is better than HPMSCs and HUVECs from different individuals in integrity and continuity of the network and angiogenesis.

    Release date:2016-08-31 04:08 Export PDF Favorites Scan
  • MORPHOLOGICAL OBSERVATION OF COMBINED CULTURE OF TENDON CELL OR FIBROBLAST OF RABBIT WITH ARTIFICIAL MATERIALS IN VITRO

    In order to investigate the compatibility and growth between the tendon cell or fibroblast of rabbit and artificial materials, the combined-culture of the two cells with the carbon fiber, terylene and chitin was observed respectively. Results showed as following: in vitro, the compatibility of carbon fiber with these two cells was well, cell-adhesion ability was good as well. Few cells grew on terylene. Chitin inhibited the growth of either cells. No matter the tendon cell or the fibroblast, the amount of cells adhering on the carbon fiber was far more than that on terylene or chitin. When the three materials were interlaced together, the collagen fibers produced by the cells were arranged in direction parallel to the carbon fibers. As the time elapsed, the cells on the carbon fiber distributed evenly and enveloped the material in network-like fashion, this suggested that carbon fiber was a good material for producing living artificial tendon and ligament.

    Release date:2016-09-01 11:08 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content