【Abstract】 Objective To evaluate the feasibility and effectiveness of reconstruction of mandibular bone defects using three-dimensional skull model and individualized titanium prosthetics from computer assisted design. Methods Between July 2002 and November 2009, 9 patients with mandibular defects accepted restorative operation using individualized bone prosthetics. Among 9 cases, 4 were male and 5 were female, aged 19-55 years. The causes of mandibulectomy were benign lesions in 8 patients and carcinoma of gingival in 1 patient. Mandibular defects exceeded midline in 2 cases, involved condylar in 4 cases, and was limited in one side without involvement of temporo-mandibular joint in 3 cases. The range of bone defects was 9.0 cm × 2.5 cm-17.0 cm × 2.5 cm. The preoperative spiral CT scan was performed and three-diamensional skull model was obtained. Titanium prosthetics of mandibular defects were designed and fabricated through multi-step procedure of reverse engineering and rapid prototyping. Titanium prosthetics were used for one-stage repair of mandibular bone defects, then two-stage implant denture was performed after 6 months. Results The individualized titanium prosthetics were inserted smoothly with one-stage operative time of 10-23 minutes. All the cases achieved incision healing by first intention and the oblique mandibular movement was corrected. They all got satisfactory face, had satisfactory contour and good occlusion. In two-stage operation, no loosening of the implants was observed and the abutments were in good position with corresponding teeth which were designed ideally before operation. All cases got satisfactory results after 1-9 years of follow-up. At last follow-up, X-ray examinations showed no loosening of implants with symmetry contour. Conclusion Computer assisted design and three-dimensional skull model techniques could accomplish the design and manufacture of individualized prosthetic for the repair of mandibular bone defects.
ObjectiveTo study the feasibility of preparation of the individualized femoral prosthesis through computer assisted design and electron beammelting rapid prototyping (EBM-RP) metal three-dimensional (3D) printing technology. MethodsOne adult male left femur specimen was used for scanning with 64-slice spiral CT; tomographic image data were imported into Mimics15.0 software to reconstruct femoral 3D model, then the 3D model of individualized femoral prosthesis was designed through UG8.0 software. Finally the 3D model data were imported into EBM-RP metal 3D printer to print the individualized sleeve. ResultsAccording to the 3D model of individualized prosthesis, customized sleeve was successfully prepared through the EBM-RP metal 3D printing technology, assembled with the standard handle component of SR modular femoral prosthesis to make the individualized femoral prosthesis. ConclusionCustomized femoral prosthesis accurately matching with metaphyseal cavity can be designed through the thin slice CT scanning and computer assisted design technology. Titanium alloy personalized prosthesis with complex 3D shape, pore surface, and good matching with metaphyseal cavity can be manufactured by the technology of EBM-RP metal 3D printing, and the technology has convenient, rapid, and accurate advantages.