west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Coordinate attention" 2 results
  • Medical nucleus image segmentation network based on convolution and attention mechanism

    Although deep learning plays an important role in cell nucleus segmentation, it still faces problems such as difficulty in extracting subtle features and blurring of nucleus edges in pathological diagnosis. Aiming at the above problems, a nuclear segmentation network combined with attention mechanism is proposed. The network uses UNet network as the basic structure and the depth separable residual (DSRC) module as the feature encoding to avoid losing the boundary information of the cell nucleus. The feature decoding uses the coordinate attention (CA) to enhance the long-range distance in the feature space and highlights the key information of the nuclear position. Finally, the semantics information fusion (SIF) module integrates the feature of deep and shallow layers to improve the segmentation effect. The experiments were performed on the 2018 data science bowl (DSB2018) dataset and the triple negative breast cancer (TNBC) dataset. For the two datasets, the accuracy of the proposed method was 92.01% and 89.80%, the sensitivity was 90.09% and 91.10%, and the mean intersection over union was 89.01% and 89.12%, respectively. The experimental results show that the proposed method can effectively segment the subtle regions of the nucleus, improve the segmentation accuracy, and provide a reliable basis for clinical diagnosis.

    Release date: Export PDF Favorites Scan
  • Feature detection of B-ultrasound images of intussusception in children based on improved YOLOv8n

    To assist grassroots sonographers in accurately and rapidly detecting intussusception lesions from children's abdominal ultrasound images, this paper proposes an improved YOLOv8n children's intussusception detection algorithm, called EMC-YOLOv8n. Firstly, the EfficientViT network with a cascaded group attention module was used as the backbone network to enhance the speed of target detection. Secondly, the improved C2fMBC module was used to replace the C2f module in the neck network to reduce network complexity, and the coordinate attention (CA) module was introduced after each C2fMBC module to enhance attention to positional information. Finally, experiments were conducted on the self-built dataset of intussusception in children. The results showed that the recall rate, average detection accuracy (mAP@0.5) and precision of the EMC-YOLOv8n algorithm improved by 3.9%, 2.1% and 0.9%, respectively, compared to the baseline algorithm. Despite slightly increased network parameters and computational load, significant improvements in detection accuracy enable efficient completion of detection tasks, demonstrating substantial economic and social value.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content