Objective To observe the histological structure and cytocompatibility of novel acellular bone matrix (ACBM) and to investigate the feasibility as a scaffold for bone tissue engineering. Methods Cancellous bone columns were harvested from the density region of 18-24 months old male canine femoral head, then were dealt with high-pressure water washing, degreasing, and decellularization with Trixon X-100 and sodium deoxycholate to prepare the ACBM scaffold. The scaffolds were observed by scanning electron microscope (SEM); HE staining, Hoechst 33258 staining, and sirius red staining were used for histological analysis. Bone marrow mesenchymal stem cells (BMSCs) from canine were isolated and cultured with density gradient centrifugation; the 3rd passage BMSCs were seeded onto the scaffold. MTT test was done to assess the cytotoxicity of the scaffolds. The proliferation and differentiation of the cells on the scaffold were observed by inverted microscope, SEM, and live/dead cell staining method. Results HE staining and Hoechst 33258 staining showed that there was no cell fragments in the scaffolds; sirius red staining showed that the ACBM scaffold was stained crimson or red and yellow alternating. SEM observation revealed a three dimensional interconnected porous structure, which was the microstructure of normal cancellous bone. Cytotoxicity testing with MTT revealed no significant difference in absorbance (A) values between different extracts (25%, 50%, and 100%) and H-DMEM culture media (P gt; 0.05), indicating no cytotoxic effect of the scaffold on BMSCs. Inverted microscope, SEM, and histological analysis showed that three dimensional interconnected porous structure of the scaffold supported the proliferation and attachment of BMSCs, which secreted abundant extracellular matrices. Live/dead cell staining results of cell-scaffold composites revealed that the cells displaying green fluorescence were observed. Conclusion Novel ACBM scaffold can be used as an alternative cell-carrier for bone tissue engineering because of thoroughly decellularization, good mircostructure, non-toxicity, and good cytocompatibility.
Objective To evaluate the cytocompatibility of collagenmembraneswith transitional cells of rabbit in vitro and to discuss the possibility of the collagen membranes as urologic tissue engineering scaffolds. Methods Primary cultured transitional cells isolated from New Zealand rabbits were implantedon collagen membranes at 1×105 cells/cm2. The changes of cell adhering were observed by inverted microscope and scanning electron microscope 2, 12 and 24hours later. The experiment was divided into 4 groups: non-cell group (black control) culture medium group(negative control), extract medium from Polyvinyl chloride group(positive control) and extract medium from collagen membranes group(experimental group). The cells of generations 2 to 4 were implanted in 96-hole-plank at 1×104 cells every hole. And every group had 5 holes. Then absorption coefficient were detected at the wave length of 490 nm by MTT assay. Then the cytotoxicity and cytocompatibility were evaluated by comparison of the numbers of absorptioncoefficient.Results The bladder transitional cells began to adhere to the collagen membrane 2 hours after implanting, and the number of the adhered cells increased with time.The actual absorption coefficient of experimental groups was 0.590±0.024,1.065±0.040 and 1.129±0.074 after 24, 72 and 120 hours. The actual absorption coefficient of negative control group was 0.639±0.068,1.022±0.044 and 1.087±0.111. The actual absorption coefficient of positive control group was 0.302±0.029,0.653±0.083 and 0.694±0.031. There was significantdifference between the experimental group and positive control (Plt;0.01), and no significant difference between the experimental group and negative control(Pgt;0.05).Conclusion Collagen membrane has good cytocompatibility withtransitional cells and no cytotoxity. It can be used as scaffolds of urologic tissue engineering.
Objective To prepare human acellular amniotic membrane(HAAM) and to measure its cytocompatibility and biocompatibility. Methods HAAM were preparedby chemical detergent-enzymatic extraction. Fresh human amnion was crosslinkedwith glutaradehyde, shaken in 0.5% SDS for 24 hours, and then treated with 0.25%trypsin for 4 hours. The production were freeze-drying and sterilized using ethylene oxide. Human fibroblasts were isolated from embryo and expanded in vitro. The fibroblasts were seeded in HAAM. HAAM and specimen were stained with HE and Mallory, and observed grossly, under light microscopy and scanning electron microscopy. The HAAM were implanted in the back of SD rats. Results There wereno residues of cells in the HAAM (HE, Mallory staining). One side of HAAM had reticular and porous structure, the other side had compact fibrous structure.Pore size was from 10 to 80 nm. The HAAM could be seeded with expanded fibroblasts in vitro,and fibroblasts had the potential of spread and proliferation. The SD rat in the implant test had no death, convulsions and other abnormal response. Conclusion The detergent-enzymatic extraction process can remove cellsand solvable components effectively and preserve the tissue matrix well and keep the reticular structure. The HAAM can be used as an ideal scaffold of biological membrane for tissue engineering.
ObjectiveTo study the preparation and cytocompatibility of bone tissue engineering scaffolds by combining low temperature three dimensional (3D) printing and vacuum freeze-drying techniques. MethodsCollagen (COL)and silk fibroin (SF) were manufactured from fresh bovine tendon and silkworm silk. SolidWorks2014 was adopted to design bone tissue engineering scaffold models with the size of 9 mm×9 mm×3 mm and pore diameter of 500μm. According to the behavior of composite materials that low temperature 3D printing equipment required, COL, SF, and nano-hydroxyapatite (nHA)at a ratio of 9:3:2 and low temperature 3D printing in combination with vacuum freeze-drying techniques were accepted to build COL/SF/nHA composite scaffolds. Gross observation and scanning electron microscope (SEM) were applied to observe the morphology and surface structures of composite scaffolds. Meanwhile, compression displacement, compression stress, and elasticity modulus were measured by mechanics machine to analyze mechanical properties of composite scaffolds. The growth and proliferation of MC3T3-E1 cells were evaluated using SEM, inverted microscope, and MTT assay after cultured for 1, 7, 14, and 21 days on the composite scaffolds. The RT-PCR and Western blot techniques were adopted to detect the gene and protein expressions of COL I, alkaline phosphatase (ALP), and osteocalcin (OCN) in MC3T3-E1 cells after 21 days. ResultsCOL/SF/nHA composite scaffolds were successfully prepared by low temperature 3D printing technology and vacuum freeze-drying techniques; the SEM results showed that the bionic bone scaffolds were 3D polyporous structures with macropores and micropores. The mechanical performance showed that the elasticity modulus was (344.783 07±40.728 55) kPa; compression displacement was (0.958 41±0.000 84) mm; and compression stress was (0.062 15±0.007 15) MPa. The results of inverted microscope, SEM, and MTT method showed that a large number of cells adhered to the surface with full extension and good cells growth inside the macropores, which demonstrated a satisfactory proliferation rate of the MC3T3-E1 cells on the composite scaffolds. The RT-PCR and Western blot electrophoresis revealed gene expressions and protein synthesis of COL I, ALP, and OCN in MC3T3-E1 cells. ConclusionLow temperature 3D printing in combination with vacuum freeze-drying techniques could realize multi-aperture coexisted bionic bone tissue engineering scaffolds and control the microstructures of composite scaffolds precisely that possess good cytocompatibility. It was expected to be a bone defect repair material, which lays a foundation for further research of bone defect.