west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Electrostatic spinning" 3 results
  • PROGRESS ON CELL INFILTRATION IN ELECTROSPUN SCAFFOLD

    Objective To introduce the research progress on the technique of improving cell infiltration in electrospun scaffold. Methods The recent original articles about improving cell infiltration in electrospun scaffold were extensively reviewed and analyzed. Results The technique includes regulation of the electrospun parameters, modification of electrospun scaffold, and dynamic culture of scaffold-cells composite etc. The effect is limited and most of them need further optimization. Conclusion Cell infiltration in electrospun scaffold is of great significance in tissue engineering application. The relatively high compressed density and small pore size have become the bottleneck problem that prevents cell infiltration and tissue ingrowth into the scaffold. The combination of different techniques will be more effective to overcome this problem.

    Release date:2016-08-31 04:06 Export PDF Favorites Scan
  • APPLICATION OF ELECTROSTATIC SPINNING TECHNOLOGY IN NANO-STRUCTURED POLYMER SCAFFOLD

    Objective To review the latest development in the research on the application of the electrostatic spinning technology in preparation of the nanometer high polymer scaffold. Methods The related articles published at home and abroad during the recent years were extensively reviewed and comprehensively analyzed. Results Micro/nano-structure and space topology on the surfaces of the scaffold materials, especially the weaving structure, were considered to have an important effect on the cell adhesion, proliferation, directional growth, and biological activation. The electrospun scaffold was reported to have a resemblance to the structure of the extracellular matrix and could be used as a promising scaffold for the tissue engineeringapplication. The electrospun scaffolds were applied to the cartilage, bone, blood vessel, heart, and nerve tissue engineering fields. Conclusion The nanostructured polymer scaffold can support the cell adhesion, proliferation, location, and differentiation,and this kind of scaffold has a considerable value in the tissue engineering field.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • Research progress of electrospinning polyurethane fiber in the field of biomedical tissue engineering

    Polyurethane materials have good biocompatibility, blood compatibility, mechanical properties, fatigue resistance and processability, and have always been highly valued as medical materials. Polyurethane fibers prepared by electrostatic spinning technology can better mimic the structure of natural extracellular matrices (ECMs), and seed cells can adhere and proliferate better to meet the requirements of tissue repair and reconstruction. The purpose of this review is to present the research progress of electrostatically spun polyurethane fibers in bone tissue engineering, skin tissue engineering, neural tissue engineering, vascular tissue engineering and cardiac tissue engineering, so that researchers can understand the practical applications of electrostatically spun polyurethane fibers in tissue engineering and regenerative medicine.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content