west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "GUO Fengfeng" 4 results
  • Current progress of laser-assisted cartilage reshaping for prominent ear

    Objective To summarize the current progress of laser-assisted cartilage reshaping (LACR) for prominent ear. Methods The domestic and abroad article concerning the LACR in treatment of prominent ear was reviewed and analyzed. Results As a new technique, there were three types of LACR therapies that been used for prominent ear. LACR with the 1 064 nm Nd/YAG laser is painful and the penetration depth of the 1 064 nm Nd/YAG laser is greater than that of the 1540 nm Er/Glass laser which is caused more tissue injury. LACR with the 1 540 nm Er/Glass laser has high absorption by the ear cartilage and produce less injury to the surrounding tissue. Use of the CO2 laser permitted cartilage reshaping combined with both vaporization and incisions, which complicates the technique, although, with low recurrence rate and definite effect. Insisting on wearing ear mold is the key to get satisfactory effectiveness for postoperative patients. The complications of LACR for prominent ear, such as the dermatitis, perforation of the skin, hematoma, or infection, should be noticed. Conclusion Application of LACR for prominent ear just has a short period of time, limited number of cases, and few relevant literature reports. Its effectiveness needs to be further studied and clarified.

    Release date:2018-05-30 04:28 Export PDF Favorites Scan
  • Research progress of clinical therapy for concha-type microtia

    ObjectiveTo summarize the current progress of clinical therapy for concha-type microtia.MethodsThe domestic and overseas literature about the treatment of concha-type microtia was reviewed and the contents of operative timing, operation selection, and complications were analyzed.ResultsThe unified therapeutic schedule of the concha-type microtia has not yet been determined due to its complicated various therapeutic methods and unknown etiology. The operation methods commonly used in clinic are partial ear reconstruction with autologous costal cartilage framework and free composite tissue transplantation. The timing of the partial ear reconstruction depends on the development of costal cartilage and children’s psychological healthy. The timing of free composite tissue transplantation depends on the severity. It is recommended to perform the operation at about 10 years old for mild patients. For moderate patients, ear cartilage stretching should be performed at 1-2 years old and free composite tissue transplantation would be performed at about 10 years old. The complications of partial ear reconstruction with autologous costal cartilage framework for concha-type microtia mainly include framework exposure, deformation, infection, cartilage absorption, and skin necrosis. The complications of free composite tissue transplantation have not been reported.ConclusionEtiology and elaborated classifications with individualized treatment are the future research directions.

    Release date:2020-06-15 02:43 Export PDF Favorites Scan
  • Preliminary study on microdissection needle-assisted ear cartilage reshaping in vivo rabbit models

    ObjectiveTo preliminarily investigate morghological changes of rabbits reshaping ear cartilage assisted by microdissection needle and explore feasibility of new therapy for ear deformity.MethodsThe bilateral ears of 5 male New Zealand rabbits (aged, 5-6 months) were fixed maintaining the curvature and randomly divided into 2 groups (5 ears in each group). The ears were stimulated by microdissection needle in experimental group and were not treated with stimulation in control group. The skin reaction in the experimental group was observed immediately and at 4 weeks after stimulation. Then, the fixtures were removed at 4 weeks, and the shapes of the ears were observed. The cartilages were harvested from the ears to examined morphological changes after HE staining, and measured the chondrocyte layer thickness.ResultsAll rabbits survived until the end of the experiment. The skin has healed completely after 4 weeks in experimental group. After removing fixtures, the ears in the two groups all maintained certain forms momentarily; while 24 hours later, the ears in the control group mostly recovered original form, and the ears in the experimental group still maintained certain molding form until 8 weeks. HE staining showed there were smooth cartilage and uniform distribution of cells in the control group; the matrix staining was basically consistent; and the skin was normal appearance with epidermis, dermis, and cartilage of normal aspect. But the proliferation of chondrocyte with more layers of cells were observed in the experimental group. In addition, there were degeneration and injury of cartilage cells and connective tissue with necrotic cells and inflammatory cells at needle insertion sites. The chondrocyte layer thickness was (385.714±2.027) μm in the control group and (1 594.732±1.872) μm in the experimental group, there was significant difference between the two groups (t=–759.059, P=0.000).ConclusionRabbit ear cartilage can be effectively reshaped by microdissection needle. Proliferation of chondrocyte and changes in matrix can be found during the reshaping process.

    Release date:2019-05-06 04:48 Export PDF Favorites Scan
  • Anthropometric measurements of moderate concha-type microtia after auricular cartilage unfolding

    ObjectiveTo explore the anthropometric changes of the auricle after auricular cartilage unfolding in moderate concha-type microtia patients, so as to provide the basis to help evaluate surgical timing and prognostic.MethodsA total of 33 children with moderate concha-type microtia, who were treated with auricular cartilage unfolding between October 2016 and September 2018 and met the inclusive criteria, were included in the study. There were 24 boys and 9 girls with an average age of 1.4 years (range, 1-3 years). Sixteen cases were left ears and 17 cases were right ears. The follow-up time was 12-23 months (mean, 17.5 months). The affected auricular detailed structures were observed and quantitatively analyzed before operation and at immediate after operation. The width, length, and perimeter of auricle before operation and at immediate after operation and at last follow-up were noted with three dimensional-scanning technology. The normal auricle was noted as control.ResultsThere were (7.5±1.0) and (11.3±0.8) structures of the affected auricle at pre- and post-operation, respectively, showing significant difference between pre- and post-operation (t=23.279, P=0.000). The length, width, and perimeter of the affected auricle constantly increased after operation, and there were significant differences between pre-operation and immediately after operation and between immediately after operation and last follow-up (P<0.05). The differences of length, width, and perimeter of the affected auricle between immediately after operation and last follow-up were (3.13±1.44), (2.44±0.92), and (8.50±3.76) mm, respectively. And the differences of length, width, and perimeter of the normal auricle between pre-operation and last follow-up were (3.16±1.54), (2.35±0.86), and (9.79±4.60) mm, respectively. There was no significant difference in the differences of length, width, and perimeter between the affected auricle and the normal auricle (P>0.05).ConclusionThe auricular cartilage unfolding in treatment of the moderate concha-type microtia can receive more ear structures and increase auricle sizes, which make it possible for free composite tissue transplantation. In addition, the affected and the contralateral normal auricles have a very similar growth rate and it offers the theoretical foundation for the early treatment for moderate concha-type microtia.

    Release date:2020-04-29 03:03 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content