ObjectiveTo explore the pathogenesis of tuberculosis and provide new ideas for its early diagnosis and treatment.MethodsGSE54992 gene expression profile was obtained from the gene expression database. Differentially expressed genes (DEGs) were screened using National Center forBiotechnology Information platform, and GO enrichment analysis, pathway analysis, pathway network analysis, gene network analysis, and co-expression analysis were performed to analyze the DEGs.ResultsCompared with the control group, a total of 3 492 genes were differentially expressed in tuberculosis. Among them, 1 686 genes were up-regulated and 1 806 genes were down-regulated. DEGs mainly involved small molecule metabolic processes, signal transduction, immune response, inflammatory response, and innate immune response. Pathway analysis revealed chemokine signaling pathway, tuberculosis, NF-Kappa B signaling pathway, cytokine-cytokine receptor interaction, and so on; gene signal network analysis found that the core genes were AKT3, PLCB1, MAPK8, and NFKB1; co-expression network analysis speculated that the core genes were PYCARD, TNFSF13, PHPT1, COMT, and GSTK1.ConclusionsAKT3, PYCARD, IRG1, CD36 and other genes and their related biological processes may be important participants in the occurrence and development of tuberculosis. Bioinformatics can help us to comprehensively study the mechanism of disease occurrence, which can provide potential targets for the diagnosis and treatment of tuberculosis.