ObjectiveTo analyze the expression profile changes of osteogenic-related genes during spontaneous calcification of rat bone marrow mesenchymal stem cells (BMSCs). MethodsBMSCs were isolated from 3-day-old healthy Sprague Dawley rats;cells at the 4th generation were used to establish the spontaneous calcification model in vitro. Spontaneous calcification process was recorded by inverted phase contrast microscope observation and alizarin red staining after 7 and 14 days of culture. For gene microarray analysis, cell samples were collected at 0, 7, and 14 days after culture; the differentially expressed genes were analyzed by bioinformatics methods and validated by real-time quantitative PCR (RT-qPCR) assay. ResultsRat BMSCs calcified spontaneously in vitro. When cultured for 7 days, the cells began to aggregate and were weakly positive for alizarin red staining. After 14 days of culture, obvious cellular aggregation and typical mineralized nodules were observed, the mineralized nodules were brightly positive for alizarin red staining. A total of 576 gene probe-sets expressed differentially during spontaneous calcification, corresponding 378 rat genes. Among them, 359 gene probe-sets expressed differentially between at 0 and 7 days, while only 13 gene probe-sets expressed differentially between at 7 and 14 days. The 378 differentially expressed genes were divided into 6 modes according to their expression profiles. Moreover, according to their biological functions, differentially expressed genes related to bone cell biology could be classified into 7 major groups:angiogenesis, apoptosis, bone-related genes, cell cycle, development, cell communication, and signal pathways related to osteogenic differentiation. In cell cycle group, 12 down-regulated genes were linked with each other functionally. Matrix metalloproteinase 13 (Mmp13), secreted phosphoprotein 1 (Spp1), Cxcl12, Mmp2, Mmp3, Apoe, and Itga7 had more functional connections with other genes. The results of genes Spp1, Mgp, Mmp13, Wnt inhibitory factor 1, Cxcl12, and cyclin A2 by RT-qPCR were consistent with that of gene microarray. ConclusionThe first 7 days after rat BMSCs were seeded are a key phase determining the fate of spontaneous calcification. Multiple genes related with cell communication, bone-related genes, cell cycle, transforming growth factor-β signaling pathway, mitogen-activated protein kinase signaling pathway, and Wnt signaling pathway are involved during spontaneous calcification.
ObjectiveTo screen for the differentially expressed genes in steroid-induced osteonecrosis of the femoral head (ONFH) by gene microarray. MethodsThe femoral head tissue of ONFH was harvested from 3 patients with steroid-induced ONFH, aged 25, 31, and 38 years, respectively. Normal tissue was harvested from a 26-year-old male remains contributor. HE staining of the specimens was performed for observing the histology manifestation; the total RNA was extracted for measuring the purity; cDNA probe was synthesized by reverse transcription, and then were hybridized as the cDNA microarray for scanning of fluorescent signals and differentially expressed genes in the tissues. ResultsHE staining of normal tissue showed complete unit composed of lamellar bone, continuous and complete lamellar bone with a concentric arrangement around blood vessels, and normal bone cells in the trabecular bone lacuna. In ONFH tissue, adipose tissue increased in the medullary cavity, with increased fat cells filling in the medullary cavity and extruding capillary, and with decreased bone cells in the bone trabecula, which had deeply-stained nuclear chromatin, pyknotic or cracking nucleus, and even bone cells disappeared in the part of the bone lacuna, and trabecular bone became thin, sparse, interrupt, reduced area in visual field/unit. Total RNA extraction electrophoretogram displayed clear bands of 28S and 18S, and the brightness ratio of the 28S:18S was 2:1, indicating good total RNA quality. And 44 genes were differentially expressed, and there were 28 up-regulated genes and 16 down-regulated genes, including cell/organism defense genes, cell structure/motility genes, cell division genes, cell signaling/cell communication genes, cell metabolism genes, gene/protein expression genes, and unclassified genes. ConclusionThe analysis of the gene expression profile of steroid-induced ONFH can provide evidence for the pathogenesis of ONFH.