west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "HAN Yechen" 4 results
  • Automatic multi-region segmentation of intracoronary optical coherence tomography images based on neutrosophic theory

    Optical coherence tomography (OCT) has become a key technique in the diagnosis of coronary artery stenosis, which can identify plaques and vulnerable plaques in the image. Therefore, this technique is of great significance for the diagnosis of coronary heart disease. However, there is still a lack of automatic, multi-region, high-precision segmentation algorithms for coronary OCT images in the current research field. Therefore, this paper proposes a multi-zone, fully automated segmentation algorithm for coronary OCT images based on neutrosophic theory, which achieves high-precision segmentation of fibrous plaques and lipid regions. In this paper, the method of transforming OCT images into T in the area of neutrosophics is redefined based on the membership function, and the segmentation accuracy of fiber plaques is improved. For the segmentation of lipid regions, the algorithm adds homomorphic filter enhancement images, and uses OCT to transform OCT images into I in the field of neutrosophics, and further uses morphological methods to achieve high-precision segmentation. In this paper, 40 OCT images from 9 patients with typical plaques were analyzed and compared with the results of manual segmentation by doctors. Experiments show that the proposed algorithm avoids the over-segmentation and under-segmentation problems of the traditional neutrosophic theory method, and accurately segment the patch area. Therefore, the work of this paper can effectively improve the accuracy of segmentation of plaque for doctors, and assist clinicians in the diagnosis and treatment of coronary heart disease.

    Release date:2019-02-18 03:16 Export PDF Favorites Scan
  • Plaque region segmentation of intracoronary optical cohenrence tomography images based on kernel graph cuts

    The segmentation of the intracoronary optical coherence tomography (OCT) images is the basis of the plaque recognition, and it is important to the following plaque feature analysis, vulnerable plaque recognition and further coronary disease aided diagnosis. This paper proposes an algorithm about multi region plaque segmentation based on kernel graph cuts model that realizes accurate segmentation of fibrous, calcium and lipid pool plaques in coronary OCT image, while boundary information has been well reserved. We segmented 20 coronary images with typical plaques in our experiment, and compared the plaque regions segmented by this algorithm to the plaque regions obtained by doctor's manual segmentation. The results showed that our algorithm is accurate to segment the plaque regions. This work has demonstrated that it can be used for reducing doctors' working time on segmenting plaque significantly, reduce subjectivity and differences between different doctors, assist clinician's diagnosis and treatment of coronary artery disease.

    Release date:2017-04-01 08:56 Export PDF Favorites Scan
  • Plaque segmentation of intracoronary optical coherence tomography images based on K-means and improved random walk algorithm

    In recent years, optical coherence tomography (OCT) has developed into a popular coronary imaging technology at home and abroad. The segmentation of plaque regions in coronary OCT images has great significance for vulnerable plaque recognition and research. In this paper, a new algorithm based on K-means clustering and improved random walk is proposed and Semi-automated segmentation of calcified plaque, fibrotic plaque and lipid pool was achieved. And the weight function of random walk is improved. The distance between the edges of pixels in the image and the seed points is added to the definition of the weight function. It increases the weak edge weights and prevent over-segmentation. Based on the above methods, the OCT images of 9 coronary atherosclerotic patients were selected for plaque segmentation. By contrasting the doctor’s manual segmentation results with this method, it was proved that this method had good robustness and accuracy. It is hoped that this method can be helpful for the clinical diagnosis of coronary heart disease.

    Release date:2017-12-21 05:21 Export PDF Favorites Scan
  • Coronary vessel intimal sequence extraction based on prior boundary constraints in optical coherence tomography image

    Optical coherence tomography (OCT) is a new technique applied in cardiovascular system. It can detect vessel intimal, small structure of plaque surface and discover small lesions with its high axial resolution and quantification character. Especially with the application of OCT in characterization of coronary atherosclerotic plaque, diagnosis and treatment strategy making, optimizing percutaneous coronary intervention therapy and assessment after stent planting make the OCT become an efficient tool for cardiovascular disease diagnosis and treatment. This paper presents a novel coronary vessel intimal sequence extraction method based on prior boundary constraints in OCT image. On the basis of conventional Chan-Vese model, we modified the evolutionary weight function to control the evolutionary rate of boundary by adding local information of boundary curve. At the same time, we added the gradient energy term and intimal boundary constraint term based on priori boundary condition to further control the evolutionary of boundary curve. At last, coronary vessel intimal is extracted in a sequence way. The comparison with vessel intimal, manual segmented by clinical scientists (golden standard), indicates that our coronary vessel intimal extraction method is robust to intimal boundary blur, distortion, guide wire shadow and plaque disturbs. The results of this study can be applied to clinical aid diagnosis and precise diagnosis and treatment.

    Release date:2019-02-18 02:31 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content