ObjectiveTo summarize the research progress of interfacial tissue engineering in rotator cuff repair.MethodsThe recent literature at home and abroad concerning interfacial tissue engineering in rotator cuff repair was analysed and summarized.ResultsInterfacial tissue engineering is to reconstruct complex and hierarchical interfacial tissues through a variety of methods to repair or regenerate damaged joints of different tissues. Interfacial tissue engineering in rotator cuff repair mainly includes seed cells, growth factors, biomaterials, oxygen concentration, and mechanical stimulation.ConclusionThe best strategy for rotator cuff healing and regeneration requires not only the use of biomaterials with gradient changes, but also the combination of seed cells, growth factors, and specific culture conditions (such as oxygen concentration and mechanical stimulation). However, the clinical transformation of the relevant treatment is still a very slow process.
Objective To summarize the research progress in posteromedial rotatory instability (PMRI) of the elbow joint. Methods The recent researches about the management of PMRI of the elbow joint from the aspects of pathological anatomy, biomechanics, diagnosis, and therapy were analyzed and summarized. Results The most important factors related to PMRI of the elbow joint are lateral collateral ligament complex (LCLC) lesion, posterior bundle of the medial collateral ligament complex (MCLC) lesion, and anteromedial coronoid fracture. Clinical physical examination include varus and valgus stress test of the elbow joint. X-ray examination, computed tomography, particularly three-dimensional reconstruction, are particularly useful to diagnose the fracture. Also MRI, arthroscopy, and dynamic ultrasound can assistantly evaluate the affiliated injury of the parenchyma. It is important to repair and reconstruct LCLC and MCLC and fix coronoid process fracture for recovering stability of the elbow joint. There are such ways to repair ligament injury as in situ repairation and functional reconstruction, which include direct suturation, borehole repairation, wire anchor repairation, and transplantation repairation etc. The methods for fixation of coronal fracture include screw fixation, plate fixation, unabsorbable suture fixation, and arthroscopy technology. Conclusion It is crucial that recovering the stability of the elbow joint and early functional exercise for the treatment of PMRI. Individual treatment is favorable to protect soft tissue, reduce surgical complications, and improve the functional recovery and the quality of life.