west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "HOU Wentao" 2 results
  • Effects of repetitive transcranial magnetic stimulation on neuronal excitability and ion channels in hindlimb unloading mice

    Weightlessness in the space environment affects astronauts’ learning memory and cognitive function. Repetitive transcranial magnetic stimulation has been shown to be effective in improving cognitive dysfunction. In this study, we investigated the effects of repetitive transcranial magnetic stimulation on neural excitability and ion channels in simulated weightlessness mice from a neurophysiological perspective. Young C57 mice were divided into control, hindlimb unloading and magnetic stimulation groups. The mice in the hindlimb unloading and magnetic stimulation groups were treated with hindlimb unloading for 14 days to establish a simulated weightlessness model, while the mice in the magnetic stimulation group were subjected to 14 days of repetitive transcranial magnetic stimulation. Using isolated brain slice patch clamp experiments, the relevant indexes of action potential and the kinetic property changes of voltage-gated sodium and potassium channels were detected to analyze the excitability of neurons and their ion channel mechanisms. The results showed that the behavioral cognitive ability and neuronal excitability of the mice decreased significantly with hindlimb unloading. Repetitive transcranial magnetic stimulation could significantly improve the cognitive impairment and neuroelectrophysiological indexes of the hindlimb unloading mice. Repetitive transcranial magnetic stimulation may change the activation, inactivation and reactivation process of sodium and potassium ion channels by promoting sodium ion outflow and inhibiting potassium ion, and affect the dynamic characteristics of ion channels, so as to enhance the excitability of single neurons and improve the cognitive damage and spatial memory ability of hindlimb unloading mice.

    Release date: Export PDF Favorites Scan
  • Effects of transcranial magneto-acoustic electrical stimulation on calcium signals in prefrontal nerve clusters

    Transcranial magneto-acoustic electrical stimulation (TMAES) is a novel method of brain nerve regulation and research, which uses induction current generated by the coupling of ultrasound and magnetic field to regulate neural electrical activity in different brain regions. As the second special envoy of nerve signal, calcium plays a key role in nerve signal transmission. In order to investigate the effect of TMAES on prefrontal cortex electrical activity, 15 mice were divided into control group, ultrasound stimulation (TUS) group and TMAES group. The TMAES group received 2.6 W/cm2 and 0.3 T of magnetic induction intensity, the TUS group received only ultrasound stimulation, and the control group received no ultrasound and magnetic field for one week. The calcium ion concentration in the prefrontal cortex of mice was recorded in real time by optical fiber photometric detection technology. The new object recognition experiment was conducted to compare the behavioral differences and the time-frequency distribution of calcium signal in each group. The results showed that the mean value of calcium transient signal in the TMAES group was (4.84 ± 0.11)% within 10 s after the stimulation, which was higher than that in the TUS group (4.40 ± 0.10)% and the control group (4.22 ± 0.08)%, and the waveform of calcium transient signal was slower, suggesting that calcium metabolism was faster. The main energy band of the TMAES group was 0−20 Hz, that of the TUS group was 0−12 Hz and that of the control group was 0−8 Hz. The cognitive index was 0.71 in the TMAES group, 0.63 in the TUS group, and 0.58 in the control group, indicating that both ultrasonic and magneto-acoustic stimulation could improve the cognitive ability of mice, but the effect of the TMAES group was better than that of the TUS group. These results suggest that TMAES can change the calcium homeostasis of prefrontal cortex nerve clusters, regulate the discharge activity of prefrontal nerve clusters, and promote cognitive function. The results of this study provide data support and reference for further exploration of the deep neural mechanism of TMAES.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content