【Abstract】Objective To investigate the role of VEGF and its soluble VEGF receptor ( sVEGFR-1) in pathogenesis of acute lung injury ( ALI) induced by immersion in seawater after open chest trauma. Methods Sixteen hybridized adult dogs were randomly divided into control group and seawater group. The control group only suffered from open chest trauma, whereas the seawater group were exposed to seawater after open chest trauma. Blood samples were collected at the 0, 2, 4, 6, 8 h after trauma for measurement of white blood cell count, arterial blood gas, plasma osmotic pressure ( POP) , electrolyte concentration, IL-8, vWF, VEGF and sVEGFR-1 levels. The lungs tissue and BALF was collected at 8 h after trauma. Pathological changes of the lung was observed under light microscope by HE staining. Meanwhile VEGF and sVEGFR-1 levels were measured in BALF and lung tissue homogenate. Total protein concentrations in plasma and BALF were measured to calculate the pulmonary penetration index ( PPI) . Results The lung of the seawater group showed interstitial mononuclear cell and neutrophil infiltration, interstitial edema, and vascular congestion. VEGF and sVEGFR-1 were significantly increased in the plasma, while VEGF was significantly reduced in the lung tissues and BALF. The levels of IL-1β, IL-8 and vWF, just as the level of VEGF, were significantly increased in the plasma. Meanwhile, the POP and electrolyte concentration were significantly increased. In the plasma, the responses of VEGFs during the early onset of ALI induced by immersion in seawater after open chest trauma were consistent with the POP and PPI. Conclusions High plasma levels and low BALF/ lung tissue levels of VEGFs is a distinguishing characteristic during the early onset of ALI induced by immersion in seawater after open chest trauma. VEGF may be a novel biomarker which has an important role in the development of ALI.
Objective To improve the model of hospital-community integrated service of day surgery through quality control circle (QCC). Methods To optimize the community follow-up management of day surgery patients, we used QCC between March and August 2015 to find out the real reasons for community follow-up problems in day surgery patients and developed and implemented corresponding countermeasures. Comparison of health education, postoperative follow-up of dressing changes, and doctor-patient satisfaction assessment before and after the implementation of the model of hospital-community integrated service of day surgery (September 2014-February 2015vs. September 2015-February 2016) was then performed. Results After QCC implementation, the average number of dressing changes in the hospital was reduced from 4.58±0.95 to 1.18±0.39 (t=181.194,P<0.001). The average number of dressing changes in the community increased from 1.42±0.52 to 4.32±0.88 (t=–146.245,P<0.001). The average number of health consultation increased from 0.85±0.38 to 6.39±1.20 (t=–177.096,P<0.001). The satisfaction assessment after QCC implementation among doctors, nurses and patients also significantly increased (P<0.01). Conclusion Applying QCC can improve the model of hospital-community integrated service of day surgery and have remarkable effects on postoperative rehabilitation and patients’ satisfaction.
ObjectiveTo explore the application of artificial intelligence in postoperative follow-up of day surgery patients, so as to establish an intelligent medical framework, promote the intelligent process of hospitals, and improve the management level of day surgery.MethodsThe artificial intelligence phonetic system was carried out by the Day Surgery Center, Renji Hospital, Shanghai Jiaotong University School of Medicine on June 1st, 2018. Through the system, the artificial intelligence voice system based on speech and semantic recognition technology was adopted to connect the data of the information center in the hospital to carry out postoperative follow-up of day surgery patients. We selected the 2 245 patients followed up by the artificial intelligence phonetic system from June 1st to November 30th 2018 (the AI follow-up group) and the 2 576 patients followed up by the traditional manual method from January 2nd to May 31st 2018 (the manual follow-up group), to compare the telephone connection rate, information collection rate, and call duration between them.ResultsThere was no statistically significant difference in telephone connection rate (85.70% vs. 86.68%) or information collection rate (98.86% vs. 98.48%) between the AI follow-up group and the manual follow-up group (P>0.05); but there was a statistically significant difference in call duration between the AI follow-up group and the manual follow-up group [(165.48±43.28) vs. (135.37±36.31) seconds, P<0.05], and the AI follow-up group had a longer call duration.ConclusionsThe application of artificial intelligence phonetic system in surgery has a good performance in call connection rate and information collection integrity. It plays an active role in improving efficiency, extending medical services and strengthening medical safety in the management of day surgery.