west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "HU Xuan" 4 results
  • Effects of adipose-derived stem cell released exosomes on proliferation, migration, and tube-like differentiation of human umbilical vein endothelial cells

    Objective To explore the effects of adipose-derived stem cell released exosomes (ADSC-Exos) on the proliferation, migration, and tube-like differentiation of human umbilical vein endothelial cells (HUVECs). Methods Adipose tissue voluntarily donated by liposuction patients was obtained. The ADSCs were harvested by enzyme digestion and identified by flow cytometry and adipogenic induction. The ADSC-Exos were extracted from the supernatant of the 3rd generation ADSCs and the morphology was observed by transmission electron microscopy. The surface proteins (Alix and CD63) were detected by Western blot. The nanoparticle tracking analyzer NanoSight was used to analyze the size distribution of ADSC-Exos. After co-culture of PKH26 fluorescently labeled ADSC-Exos with HUVECs, confocal microscopy had been used to observe whether ADSC-Exos could absorbed by HUVECs. ADSC-Exos and HUVECs were co-cultured for 1, 2, 3, 4, and 5 days. The effect of ADSC-Exos on the proliferation of HUVECs was detected by cell counting kit 8 (CCK-8) assay. The expression of VEGF protein in the supernatant of HUVECs with or without ADSC-Exos had been detected by ELISA after 12 hours. Transwell migration assay was used to detect the effect of ADSC-Exos on the migration ability of HUVECs. The effect of ADSC-Exos on the tubular structure formation of HUVECs was observed by Matrigel experiments in vitro. The formation of subcutaneous tubular structure in vivo was observed in BALB/c male nude mice via the injection of HUVECs and Matrigel with or without ADSC-Exos. After 2 weeks, the neovascularization in Matrigel was measured and mean blood vessel density (MVD) was calculated. The above experiments were all controlled by the same amount of PBS. Results After identification, the cultured cells were consistent with the characteristics of ADSCs. ADSC-Exos were circular or elliptical membranous vesicle with uniform morphology under transmission electron microscopy, and expresses the signature proteins Alix and CD63 with particle size ranging from 30 to 200 nm. Confocal microscopy results showed that ADSC-Exos could be absorbed by HUVECs. The CCK-8 analysis showed that the cell proliferation of the experimental group was better than that of the control group at each time point (P<0.05). The result of Transwell showed that the trans-membrane migration cells in the experimental group were significantly more than that in the control group (t=9.534, P=0.000). In vitro, Matrigel tube-forming experiment showed that the number of tube-like structures in the experimental group was significantly higher than that of the control group (t=15.910, P=0.000). In vivo, the MVD of the experimental group was significantly higher than that of the control group (t=16.710, P=0.000). The ELISA assay showed that the expression of VEGF protein in the supernatant of the experimental group was significantly higher than that of the control group (t=21.470, P=0.000). Conclusion ADSC-Exos can promote proliferation, migration, and tube-like structure formation of HUVECs, suggesting that ADSC-Exos can promote angiogenesisin vitro and in vivo.

    Release date:2018-10-09 10:34 Export PDF Favorites Scan
  • Effect of circulating estrogen level on the outcome of free fat grafting in nude mice

    ObjectiveTo investigate the effect of circulating estrogen level on the outcome of free fat grafting in nude mice.MethodsEighteen female nude mice aged 6-8 weeks (weighing, 20-25 g) were randomly divided into 3 groups (n=6). The nude mice in the ovariectomized group were treated with ovariectomy. The nude mice in the high estrogen group and the normal estrogen group only made the same incision to enter the peritoneum without ovariectomy. The nude mice in the high estrogen group were given the estradiol (0.2 mg/g) every 3 days for 30 days. The other two groups were given the same amount of PBS every 3 days. At 30 days after operation, the tail vein blood of nude mice in 3 groups were detected by estradiol ELISA kit, and the free fat (0.3 mL) donated by the females was injected into the sub-scalp of nude mice. After 8 weeks of fat grafting, the samples were taken for gross observation and weighing, and the prepared slices were stained with HE staining, CD31-perilipin fluorescence staining, immunohistochemical staining of uncoupling protein 1 (UCP1), and immunofluorescence staining of estrogen receptor α. The diameter of adipocytes and vascular density of adipose tissue were measured. The mRNA expressions of UCP1 and estrogen receptor α were detected by realtime fluorescence quantitative PCR (qRT-PCR).ResultsAll nude mice survived during experiment. ELISA test showed that the concentration of estradiol significantly decreased in the ovariectomized group and increased in the high estrogen group compared with the normal estrogen group (P<0.05). At 8 weeks after fat grafting, the graft volume from large to small was ovariectomized group, normal estrogen group, and high estrogen group. There was significant difference in wet weight between the ovariectomized group and high estrogen group (P<0.05). Section staining showed that compared with the normal estrogen group, the adipocytes in the ovariectomized group were larger, the expression of peri-lipoprotein was weaker, the vascular density decreased, and the expressions of UCP1 was negative, and the estrogen receptor α positive cells reduced. The above observation results in the high estrogen group were contrary to those in the ovariectomized group. There were significant differences in the diameter of adipocytes, the vascular density of adipose tissue, the number of the estrogen receptor α positive cells between groups (P<0.05). The results of qRT-PCR showed that the mRNA expressions of UCP1 and estrogen receptor α significantly increased in the high estrogen group and decreased in the ovariectomized group compared with the normal estrogen group, and the differences were significant (P<0.05).ConclusionThe level of circulating estrogen has a significant effect on the outcome of free fat grafting in nude mice. Low estrogen level leads to hypertrophy of graft adipocytes, while high estrogen level leads to the production of a large amount of beige fat and high vascular density in fat grafts, which may be related to the activation of estrogen receptor α on adipocytes.

    Release date:2020-02-20 05:18 Export PDF Favorites Scan
  • Effect of adipose-derived stem cell derived exosomes on angiogenesis after skin flap transplantation in rats

    ObjectiveTo investigate the effect of adipose-derived stem cell derived exosomes (ADSC-Exos) on angiogenesis after skin flap transplantation in rats.MethodsADSCs were isolated and cultured by enzymatic digestion from voluntary donated adipose tissue of patients undergoing liposuction. The 3rd generation cells were observed under microscopy and identified by flow cytometry and oil red O staining at 14 days after induction of adipogenesis. After cells were identified as ADSCs, ADSC-Exos was extracted by density gradient centrifugation. And the morphology was observed by transmission electron microscopy, the surface marker proteins (CD63, TSG101) were detected by Western blot, and particle size distribution was measured by nanoparticle size tracking analyzer. Twenty male Sprague Dawley rats, weighing 250-300 g, were randomly divided into ADSC-Exos group and PBS group with 10 rats in each group. ADSC-Exos (ADSC-Exos group) and PBS (PBS group) were injected into the proximal, middle, and distal regions of the dorsal free flaps with an area of 9 cm×3 cm along the long axis in the two groups. The survival rate of the flap was measured on the 7th day, and then the flap tissue was harvested. The tissue morphology was observed by HE staining, and mean blood vessel density (MVD) was measured by CD31 immunohistochemical staining.ResultsADSCs were identified by microscopy, flow cytometry, and adipogenic induction culture. ADSC-Exos was a round or elliptical membrane vesicle with clear edge and uniform size. It has high expression of CD63 and TSG101, and its size distribution was 30-200 nm, which was in accordance with the size range of Exos. The distal necrosis of the flaps in the ADSC-Exos group was milder than that in the PBS group. On the 7th day, the survival rate of the flaps in the ADSC-Exos group was 64.2%±11.5%, which was significantly higher than that in the PBS group (31.0%±6.6%; t=7.945, P=0.000); the skin appendages in the middle region of the flap in the ADSC-Exos group were more complete, the edema in the proximal region was lighter and the vasodilation was more extensive. MVD of the ADSC-Exos group was (103.3±27.0) /field, which was significantly higher than that of the PBS group [(45.3±16.2)/field; t=3.190, P=0.011].ConclusionADSC-Exos can improve the blood supply of skin flaps by promoting the formation of neovascularization after skin flap transplantation, thereby improve the survival rate of skin flaps in rats.

    Release date:2019-12-23 09:44 Export PDF Favorites Scan
  • Effects of adipose-derived stem cell released exosomes on wound healing in diabetic mice

    ObjectiveTo investigate the effects of adipose-derived stem cell released exosomes (ADSC-Exos) on wound healing in diabetic mice.MethodsThe ADSCs were isolated from the adipose tissue donated by the patients and cultured by enzymatic digestion. The supernatant of the 3rd generation ADSCs was used to extract Exos (ADSC-Exos). The morphology of ADSC-Exos was observed by transmission electron microscopy. The membrane-labeled proteins (Alix and CD63) were detected by Western blot, and the particle size distribution was detected by nanoparticle tracking analyzer. The fibroblasts were isolated from the skin tissue donated by the patients and cultured by enzymatic digestion. The 5th generation fibroblasts were cultured with PKH26-labeled ADSC-Exos, and observed by confocal fluorescence microscopy. The effects of ADSC-Exos on proliferation and migration of fibroblasts were observed with cell counting kit 8 (CCK-8) and scratch method. Twenty-four 8-week-old Balb/c male mice were used to prepare a diabetic model. A full-thickness skin defect of 8 mm in diameter was prepared on the back. And 0.2 mL of ADSC-Exos and PBS were injected into the dermis of the experimental group (n=12) and the control group (n=12), respectively. On the 1st, 4th, 7th, 11th, 16th, and 21st days, the wound healing was observed and the wound healing rate was calculated. On the 7th, 14th, and 21st days, the histology (HE and Masson) and CD31 immunohistochemical staining were performed to observe the wound structure, collagen fibers, and neovascularization.ResultsADSC-Exos were the membranous vesicles with clear edges and uniform size; the particle size was 40-200 nm with an average of 102.1 nm; the membrane-labeled proteins (Alix and CD63) were positive. The composite culture observation showed that ADSC-Exos could enter the fibroblasts and promote the proliferation and migration of fibroblasts. Animal experiments showed that the wound healing of the experimental group was significantly faster than that of the control group, and the wound healing rate was significantly different at each time point (P<0.05). Compared with the control group, the wound healing of the experimental group was better. There were more microvessels in the early healing stage, and more deposited collagen fibers in the late healing stage. There were significant differences in the length of wound on the 7th, 14th, and 21st days, the number of microvessels on the 7th and 14th days, and the rate of deposited collagen fibers on the 14th and 21st days between the two groups (P<0.05).ConclusionADSC-Exos can promote the wound healing in diabetic mice by promoting angiogenesis and proliferation and migration of fibroblasts and collagen synthesis.

    Release date:2020-02-18 09:10 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content