In recent years, due to the emergence of ultrafast ultrasound imaging technology, the sensitivity of detecting slow and micro blood flow with ultrasound has been dramatically improved, and functional ultrasound imaging (fUSI) has been developed. fUSI is a novel technology for neurological imaging that utilizes neurovascular coupling to detect the functional activity of the central nervous system (CNS) with high spatiotemporal resolution and high sensitivity, which is dynamic, non-invasive or minimally invasive. fUSI fills the gap between functional magnetic resonance imaging (fMRI) and optical imaging with its high accessibility and portability. Moreover, it is compatible with electrophysiological recording and optogenetics. In this paper, we review the developments of fUSI and its applications in neuroimaging. To date, fUSI has been used in various animals ranging from mice to non-human primates, as well as in clinical surgeries and bedside functional brain imaging of neonates. In conclusion, fUSI has great potential in neuroscience research and is expected to become an important tool for neuroscientists, pathologists and pharmacologists.