west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "HUANG Rongqing" 1 results
  • Gas chromatography-mass spectrometry study on composition of volatile organic compounds in exhaled breath of radiation-damaged rats

    Objective To explore composition of volatile organic compounds (VOCs) in exhaled breath of low-dose radiation-damaged Sprague-Dawely (SD) rats by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS), and search for the differential metabolites of VOCs in the series of rats after radiation damage, and establish a noninvasive radiation damage detection method. Methods SD rats were randomly divided into five groups (a blank group, a 0.5-Gy group, a 1-Gy group, a 2-Gy group, and a 3-Gy group), with 8 rats in each group. A low-dose radiation injury model was established in rats. After the cobalt source radiation damage was performed, the body weight of rats was recorded, peripheral blood hematology was analyzed, and the exhaled breath of rats was collected on the 1st, 5th, 9th and 13th day. The composition of VOCs in the exhaled breath was analyzed by using the TD30-GC-MS technique, and multivariate statistical analyses were carried out to explore and obtain the differentiated metabolites after the radiation damage. Results After radiation damage, the rats showed a short-term decrease in body weight, peripheral blood and lung tissue sections were different, and the content of VOCs components in the exhaled breath of the damaged rats was significantly different from that of the rats in the blank group. Among them, four VOCs, acetophenone, nonanal, decanal and tetradecane increased, while heptane, chlorobenzene, paraxylene and m-dichlorobenzene decreased. Conclusions Through the GC-MS analysis of the exhaled breath of rats, eight components of VOCs in the exhaled breath of rats can be used as differential metabolites of radiation damage. This study lays a foundation for the establishment of a GC-MS analysis method for the components of VOCs in the exhaled breath of rats, as well as for the development of a nondestructive analytical assay for biological radiation damage.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content