The main shortcomings of using electrocortical stimulation (ECS) in identifying the motor functional area around the focus in neurosurgery are certainly time-consuming, possibly cerebral cortex injuring and perhaps triggering epilepsy. To solve these problems, we in our research presented an intraoperative motor cortex functional mapping based on electrocorticography (ECoG). At first, using power spectrum estimation, we analyzed the characteristic of ECoG which was related to move task, and selected Mu rhythm as the move-related feature. Then we extracted the feature from original ECoG by multi-resolution wavelet analysis. By calculating the sum value of feature in every channel and observing the distribution of these sum values, we obtained the correlation between the cortex area under the electrode and motor cortex functional area. The results showed that the distribution of the relationship between the cortex under the electrode and motor cortex functional area was almost consistent with those identified by ECS which was called as ‘the gold-standard’. It indicated that this method was basically feasible, and it just needed five minutes totally. In conclusion, ECoG-based and passive identification of motor cortical function may serve as a useful adjunct to ECS in the intraoperative mapping.
Wearable devices are used in the new design of the maternal health care system to detect electrocardiogram and oxygen saturation signal while smart terminals are used to achieve assessments and input maternal clinical information. All the results combined with biochemical analysis from hospital are uploaded to cloud server by mobile Internet. Machine learning algorithms are used for data mining of all information of subjects. This system can achieve the assessment and care of maternal physical health as well as mental health. Moreover, the system can send the results and health guidance to smart terminals.