west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Human bone marrow mesenchymal" 6 results
  • DYNAMIC CHANGES OF GENE EXPRESSION PROFILES DURING CARDIOMYOGENESIS OF HUMANMARROW MESENCHYMAL STEM CELLS/

    Objective To analyze the changes of gene expression profiles during the process that human bonemarrow mesenchymal stem cells (hBMSCs) are induced to differentiate into cardiomyogenic cells with 5-azacytidine (5-aza). Methods hBMSCs were isolated from marrow of obsolete ribs and induced with 5-aza. Then immunocytochemicalstaining was used to detect the expressions of α-actin, cardiac troponin T (cTnT), and connexin 43, and the percentage ofcTnT positive cells was tested with flow cytometry. In the process of differentiation, variation of gene expression was screenedwith Genechi ps Operating System of human gene expression profiles. And the differentially expressed genes were functionallyanalyzed and hierarchical clustered. Results When BMSCs were induced in vitro with 5-aza, part of the cells turnedinto myogenic cells morphologically. Before induction, immunocytochemical staining for α-actin and cTnT showed sl ightpositive and for connexin 43 showed negative. While after 3 weeks of induction, immunocytochemical staining for α-actin,cTnT, and connexin 43 showed all positive. With flow cytometry, the percentage of cTnT positive cells was 7.43% ± 0.02%before induction, but it was 49.64% ± 0.05% after induction. During differentiation, 1 814 differentially expressed geneswere reported by gene chi ps. Of them, 647 genes were divided into 5 groups with hierarchical clustering. They had variousbiological functions, involving signal transduction, cell metabol ism, prol iferation, differentiation, development, andtopogenesis. Conclusion hBMSCs can differentiate into cardiomyogenic cells with the induction of 5-aza in vitro. Multi plegenes related with signal transduction, transcri ption, and growth factors are involved during this process.

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
  • CHANGES OF MICRO RNA AND TARGET GENE EXPRESSION LEVELS IN OSTEOGENIC DIFFERENTIATION OF HUMAN BONE MARROW MESENCHYMAL STEM CELLS

    Objective To clarify the trends of expression levels of several up-regulated micro RNA (miRNA) in tissues of atrophic bone nonunion and mRNAs and proteins of their related target genes in osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs), and to explore their biological functions. Methods The hBMSCs were isolated from bone marrow of il iac bone by gradient centrifugation, and cultured. Osteogenic culture medium was used for osteogenic differentiation of the 4th generation of hBMSCs. The changes of corresponding miRNAs, mRNA and protein expression levels of related target genes were observed at 0 hour, 12 hours, 1 day, 2 days, 4 days, 7 days, and 14 days, by quantitative real-time PCR and Western blot. Results In the process of hBMSCs osteogenic differentiation, the mRNA and protein expression levels of osteoblastic target genes [alkal ine phosphatase l iver/bone/kidney (ALPL), bone morphogeneticprotein 2 (BMP-2), and platelet-derived factor alpha polypeptide (PDGF-A)] at most time points increased significantly whencompared with the values at 0 hour except that of BMP-2 decreased at 12 hours and 1 day, with maximum changes at 1 to 7 days. The miRNA expression levels, mRNA and protein expression levels changed significantly at different time points, while the trends of hsa-miRNA-149 and hsa-miRNA-654-5p changes were negatively correlated with the trends of ALPL and BMP-2 mRNA and protein expression changes respectively (P lt; 0.05). There was no obviously negative correlation between the trends of hsa-miRNA-221 change and PDGF-A change (P gt; 0.05). Conclusion In the osteogenic differentiation process of hBMSCs, hsa-miRNA-149 and hsa-miRNA-654-5p are closely related with the mRNA and protein regulation of ALPL and BMP-2, respectively.

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
  • REGULATION OF HUMAN BONE MARROW MESENCHYMAL STEM CELLS OSTEOGENIC AND ADIPOGENIC DIFFERENTIATIONS BY Wnt10b ADENOVIRAL VECTOR IN VITRO

    ObjectiveTo investigate the regulation of human bone marrow mesenchymal stem cells (hBMSCs) osteogenic and adipogenic differentiations mediated by Wnt10b adenoviral vector in vitro. MethodsThe hBMSCs from ilial bone tissue in adults at passage 4 were infected by Wnt10b gene expression adenoviral vector (group A), Wnt10b-shRNA adenoviral vector (group B), and empty vector (group C), and non-transfected hBMSCs served as the blank control group. Then the cells were cultured separately in the circumstance of osteogenic induction, adipogenic induction, and non-induction. The alkaline phosphatase (ALP) staining, alizarin red staining, and oil red O staining were used to detect the osteogenic and adipogenic differentiations; real-time fluorescent quantitative PCR and Western blot were used to analyze the expressions of osteoblast and adipocyte genes and proteins. ResultsThe results of ALP staining were positive after osteogenic induction, group A showed strong staining, and group B showed the weakest staining. The results of alizarin red staining showed that there were a lot of patchy confluent brown mineralized nodules in group A; a few punctate brown mineralized nodules were seen in group B; and many punctuate brown mineralized nodules were found in groups C and D. The results of oil red O staining showed strong staining in groups B, C, and D after adipogenic induction, especially in group B; scattered or small clustered staining was observed in group A. The expressions of osteoblast genes and proteins were significantly higher in group A than groups B, C, and D, and in groups C and D than group B by real-time fluorescent quantitative PCR and Western blot test; however, the expressions of adipocyte genes and proteins showed a contrary tendency. ConclusionThe high level expression of Wnt10b can enhance osteogenic differentiation of hBMSCs, and the low level expression of Wnt10b can increase adipogenic differentiation of hBMSCs.

    Release date: Export PDF Favorites Scan
  • EFFECTS OF LEUKEMIA INHIBITORY FACTOR COMBINED WITH BASIC FIBROBLAST GROWTH FACTOR ON PROLIFERATION AND DIFFERENTIATION OF HUMAN BONE MARROW MESENCHYMAL STEM CELLS

    ObjectiveTo study the effects of leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF) on the proliferation and differentiation of human bone marrow mesenchymal stem cells (hBMSCs). MethodshBMSCs at passage 4 were divided into 4 groups according to different culture conditions:cells were treated with complete medium (α-MEM containing 10%FBS, group A), with complete medium containing 10 ng/mL LIF (group B), with complete medium containing 10 ng/mL bFGF (group C), and with complete medium containing 10 ng/mL LIF and 10 ng/mL bFGF (group D). The growth curves of hBMSCs at passage 4 in different groups were assayed by cell counting kit 8; cellular morphologic changes were observed under inverted phase contrast microscope; the surface markers of hBMSCs at passage 8 including CD44, CD90, CD19, and CD34 were detected by flow cytometry. ResultsThe cell growth curves of each group were similar to the S-shape; the cell proliferation rates in 4 groups were in sequence of group D > group C > group B > group A. Obvious senescence and differentiation were observed very early in group A, cells in group B maintained good cellular morphology at the early stage, with slow proliferation and late senescence; a few cells in group C differentiated into nerve-like cells, with quick proliferation; and the cells in group D grew quickly and maintained cellular morphology of hBMSCs. The expressions of CD44 and CD90 in groups A and C at passage 8 cells were lower than those of groups B and D; the expressions of CD19 and CD34 were negative in 4 groups, exhibiting no obvious difference between groups. ConclusionLIF combined with bFGF can not only maintain multiple differentiation potential of hBMSCs, but also promote proliferation of hBMSCs.

    Release date: Export PDF Favorites Scan
  • HYPOXIA INDUCIBLE FACTOR 1α/2α GENES EXPRESSION IN CHONDROGENIC DIFFERENTIATION OF HUMAN BONE MARROW MESENCHYMAL STEM CELLS

    ObjectiveTo observe the genes expression of hypoxia inducible factor 1α (HIF-1α) and HIF-2α by inducing chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) so as to provide a fundamental basis for HIF involving in the mechanism of chondrogenesis. MethodsHigh density pellet of hBMSCs was obtained by centrifugation and cultured with H-DMEM medium containing 2% fetal bovine serum (control group) and with chondrogenic medium (chondrogenic induction group) under hypoxia (2%O2) for 3 weeks. Immunohistochemistry staining was utilized to identify extracellular proteoglycan and collagen type Ⅱ at 3 weeks after culture. Western blot was applied for measuring HIF-1α and HIF-2α protein levels at 1 week after culture. Real-time quantitative PCR was performed to detect the genes expressions of HIF-1α, HIF-2α, Sox-9, collagen type Ⅱ, collagen type X, and Aggrecan at 1, 2, and 3 weeks after culture. ResultsToluidine blue staining showed sparse nucleus in the control group, and dense nucleus in the chondrogenic induction group;extracellular matrix staining was deeper in the chondrogenic induction group than the control group. Immunohistochemical staining for collagen type Ⅱ was positive in cytoplasm;when compared with the chondrogenic induction group, the control group showed sparse and light-coloured nucleus. At 1 week after culture, the protein expression levels of HIF-1α and HIF-2α in the chondrogenic induction group were significantly lower than those in the control group (t=8.345, P=0.001;t=7.683, P=0.002). When compared with control group, the HIF-1α mRNA expression was significantly down-regulated at 1 week and significantly up-regulated at 2 weeks in chondrogenic induction group (P<0.05), but no significant difference was found at 3 weeks between the 2 groups (P>0.05). And the mRNA expression of HIF-2α was significantly down-regulated and mRNA expression of Sox-9 was significantly up-regulated after chondrogenic differentiation when compared with the control group (P<0.01). The mRNA expressions of collagen type Ⅱ and collagen type X were significantly up-regulated at 2 and 3 weeks after chondrogenic differentiation when compared with the control group (P<0.05). And the mRNA expression of Aggrecan was significantly up-regulated at each time point after chondrogenic differentiation (P<0.05). ConclusionHIF-1α may involve the hBMSCs chondrogenic differentiation under hypoxia, while HIF-2α expression is depressed throughout the period and may have negative effect on differentiation.

    Release date: Export PDF Favorites Scan
  • Effect of Wnt/β-catenin signaling pathway in neural differentiation of human bone marrow mesenchymal stem cells

    Objective To explore the effect of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and the combination of bFGF and EGF in the neural differentiation of human bone marrow mesenchymal stem cells (hBMSCs), and the role of Wnt/β-catenin signaling pathway in this process. MethodsThe identified 4th-generation hBMSCs were divided into five groups according to different induction conditions, namely control group (group A), EGF induction group (group B), bFGF induction group (group C), EGF and bFGF combined induction group (group D), and EGF, bFGF, and Dickkopf-related protein 1 (DKK-1) combined induction group (group E). After 7 days of continuous induction, the cell morphology was observed by inverted fluorescence phase contrast microscopy, levels of genes that were related to neural cells [Nestin, neuron-specific enolase (NSE), microtubule-associated protein 2 (MAP-2), and glial fibrillary acidic protein (GFAP)] and key components of the Wnt/β-catenin signaling pathway (β-catenin and Cyclin D1) were detected by RT-PCR, and the levels of proteins that were related to neural cells (Nestin and GFAP) as well as genes that were involved in Wnt/β-catenin signaling pathway [β-catenin, phosphorylation β-catenin (P-β-catenin), Cytoplasmic β-catenin, and Nuclear β-catenin] were explored by cellular immunofluorescence staining and Western blot. ResultsWhen compared to groups A and B, the typical neuro-like cell changes were observed in groups C-E, and most obviously in group D. RT-PCR showed that the relative expressions of Nestin, NSE, and MAP-2 genes in groups C-E, the relative expressions of GFAP gene in groups D and E, the relative expression of NSE gene in group B, the relative expressions of β-catenin gene in groups C and D, and the relative expressions of Cyclin D1 gene in groups B-D significantly increased when compared with group A (P<0.05). Compared with group E, the relative expressions of Nestin, NSE, MAP-2, GFAP, β-catenin, and CyclinD1 genes significantly increased in group D (P<0.05); compared with group C, the relative expression of Nestin gene in group D significantly decreased (P<0.05), while NSE, MAP-2, and GFAP genes significantly increased (P<0.05). The cellular immunofluorescence staining showed that the ratio of NSE- and GFAP-positive cells significantly increased in groups C-E than in group A, in group D than in groups C and E (P<0.05). Western blot assay showed that the relative expression of NSE protein was significantly higher in groups C and D than in group A and in group D than in groups C and E (P<0.05). In addition, the relative expression of GFAP protein was significantly higher in groups C-E than in group A and in group D than in group E (P<0.05). Besides, the relative expressions of β-catenin, Cytoplasmic β-catenin, Nuclear β-catenin, and the ratio of Nuclear β-catenin to Cytoplasmic β-catenin were significantly higher in groups C and D than in group A and in group D than in group E (P<0.05), whereas the relative expression of P-β-catenin protein was significantly lower in groups C and D than in group A and in group D than in group E (P<0.05). Conclusion Different from EGF, bFGF can induce neural differentiation of hBMSCs. In addition, EGF can enhance the hBMSCs neural differentiation of bFGF, while the Wnt/β-catenin signaling pathway may play a positive regulatory role in these processes.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content