ObjectiveTo detect the relationship between human cytomegalovirus (HCMV) antibody and anti-oxidized low density lipoprotein (anti-ox-LDL). MethodsSixty blood samples from healthy women who underwent physical examination between April 2008 and October 2012 in our hospital was collected. Anti-ox-LDL antibody was detected by enzyme-linked immunosorbent assay. All samples were divided into high-titer group and low-titer group according to the level of ox-LDL antibody. HCMV- immunoglobulin (Ig)G and -IgM were then assayed by specific kit. ResultsIn ox-LDL high-titer group, the level of anti-HCMV antibody was also dramatically higher than ox-LDL low-titer group (P<0.001). ConclusionThere is a significant relationship between expression of ox-LDL and HCMV infection.
ObjectiveTo explore the therapeutic effects of spleen aminopeptide on connective tissue disease-related interstitial lung disease (CTD-ILD) and its mechanism for anti-fibrosis. MethodsNinety patients with CTD-ILD admitted between February 2014 and May 2015 were recruited in the study. The CTD-ILD patients were randomly divided into group A (conventional therapy alone) and group B (conventional therapy plus spleen aminopeptide). Peripheral blood collected from CTD-ILD patients were subjected to performance of flow cytometric analysis and cytokine/chemokines profiling by liquid Chip and ELISA assay. Pulmonary function test and high resolution CT (HRCT) scan were performed before and after the treatments for 12 weeks. Human cytomegalovirus (HCMV) DNA in the patients' blood was tested by Q-PCR. ResultsSignificantly improved lung function and HRCT score were observed in group B, but not in group A. The levels of Treg and IFN-γ were significantly increased in group B, compared with those in group A where markedly increased IL-6, IL-10 and IL-17 were detected (P < 0.05). There was higher virus negative reversal rate in group B than that in group A (P < 0.05). ConclusionSpleen aminopeptid can effectively regulate deregulated immune microenvironment in CTD-ILD patients and inhibit HCMV replication, thereby block pulmonary fibrotic development.
This study aimed to investigate the effect of curcumin (Cur) against human cytomegalovirus (HCMV) in vitro. Human embryonic lung fibroblasts were cultured in vitro. The tetrazolium salt (MTS) method was used to detect the effects of Cur on cell viability. The cells were divided into control group, HCMV group, HCMV + (PFA) group and HCMV + Cur group in this study. The cytopathic effect (CPE) of each group was observed by plaque test, then the copy number of HCMV DNA in each group was detected by quantitative polymerase chain reaction (qPCR), and the expression of HCMV proteins in different sequence was detected by Western blot. The results showed that when the concentration of Cur was not higher than 15 μmol/L, there was no significant change in cell growth and viability in the Cur group compared with the control group (P>0.05). After the cells were infected by HCMV for 5 d, the cells began to show CPE, and the number of plaques increased with time. Pretreatment with Cur significantly reduced CPE in a dose-dependent manner. After the cells were infected by HCMV, the DNA copy number and protein expression gradually increased in a time-dependent manner. Pretreatment with Cur significantly inhibited HCMV DNA copies and downregulate HCMV protein expression levels in a concentration-dependent manner, and the difference was statistically significant (P<0.05). In conclusion, Cur may exert anti-HCMV activity by inhibiting the replication of HCMV DNA and down-regulating the expression levels of different sequence proteins of HCMV. This study provides a new experimental basis for the development of anti-HCMV infectious drugs.