The surface morphology of titanium metal is an important factor affecting its hydrophilicity and biocompatibility, and exploring the surface treatment strategy of titanium metal is an important way to improve its biocompatibility. In this study, titanium (TA4) was firstly treated by large particle sand blasting and acid etching (SLA) technology, and then the obtained SLA-TA4 was treated by single surface treatments such as alkali-heat, ultraviolet light and plasma bombardment. According to the experimental results, alkali-heat treatment is the best treatment method to improve and maintain surface hydrophilicity of titanium. Then, the nanowire network morphology of titanium surface and its biological property, formed by further surface treatments on the basis of alkali-heat treatment, were investigated. Through the cell adhesion experiment of mouse embryonic osteoblast cells (MC3T3-E1), the ability of titanium material to support cell adhesion and cell spreading was investigated after different surface treatments. The mechanism of biological activity difference of titanium surface formed by different surface treatments was investigated according to the contact angle, pit depth and roughness of the titanium sheet surface. The results showed that the SLA-TA4 titanium sheet after a treatment of alkali heat for 10 h and ultraviolet irradiation for 1 h has the best biological activity and stability. From the perspective of improving surface bioactivity of medical devices, this study has important reference value for relevant researches on surface treatment of titanium implantable medical devices.
Hydrogel is a kind of degradable hydrophilic polymer, but excessive hydrophilicity leads to larger volume, lower elastic modulus and looser structure, which further affect its use. Especially in the field of biomedical engineering, excessive swelling of the hydrogel can compress the nerves and improve degradation rate resulting in mismatch of tissue growth and released ions. Therefore, anti-swelling hydrogel has been a research hotspot in recent years. This paper reviews the recent research progress on anti-swelling hydrogel, and expounds the application mechanism and preparation method of hydrogel in biomedical engineering, aiming to provide some references for researchers in the field of anti-swelling hydrogel.