Objective To investigate the correlation between down-regulation of miR-381-3p and inhibition of osteogenic differentiation of mouse embryonic palatal mesenchymal (MEPM) cells in 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD)-induced cleft palate of fetal mice. Methods Thirty-two pregnant mice were randomly divided into TCDD group and control group, 16 in each group. On embryonic day 10.5 (E10.5), the pregnant mice in TCDD group were orally administrated with TCDD at dosage of 28 μg/kg, while the pregnant mice in control group received equivalent corn oil. The pregnant mice in each group were sacrificed on E13.5 and E14.5, fetal palates were collected for analysis. The expression of miR-381-3p was detected by real-time fluorescent quantitative PCR and the protein expressions of runt- related transcription factor 2 (RUNX2) and osteopontin (OPN) were detected by Western blot. MEPM cells were extracted from fetal palates on E14.5 in control group and passaged. The 3rd passage cells were cultured with TCDD at dosage of 10 nmol/L for 0, 0.5, 1, 2, and 3 days. The expression of miR-381-3p was detected after 0, 0.5, 1, 2, and 3 days and the protein expressions of RUNX2 and OPN were detected after 0, 1, 2, and 3 days. Then, the 3rd passage cells were divided into 4 groups. The MEPM cells were transfected with miR-381-3p inhibitor (inhibitor group), NC inhibitor (NC inhibitor group) and miR-381-3p mimics (mimics group), NC mimics (NC mimics group) for 48 hours, respectively. And the expressions of miR-381-3p and the protein expressions of RUNX2 and OPN were detected. Results On E13.5 and E14.5, 96 fetal mice in control group and 92 in TCDD group were obtained. The bilateral palates contacted in control group on E14.5, and a gap between the bilateral palates existed in TCDD group. On E13.5 and E14.5, the relative expressions of miR-381-3p and RUNX2 and OPN proteins were significant lower in TCDD group than in control group (P<0.05). The relative expression of miR-381-3p at 0.5 and 1 day after TCDD treatment of MEPM cells were significantly lower than that at 0 day (P<0.05); then, the relative expressions at 2 and 3 days significantly increased, showing no significant difference when compared with that at 0 day (P>0.05). The relative expressions of RUNX2 and OPN proteins at 1, 2, and 3 days were significantly lower than that at 0 day (P<0.05). The relative expressions of miR-381-3p and RUNX2 and OPN proteins significantly lower in inhibitor group than in NC inhibitor group (P<0.05) and higher in mimics group than in NC mimics group (P<0.05). Conclusion Down-regulation of miR-381-3p expression may be associated with inhibition of osteogenic differentiation of MEPM cells in TCDD-induced cleft palate of fetal mice.
Objective The combined appl ication of green fluorescent protein (GFP) and confocal laser scanning microscope three-dimensional reconstruction (CLSM-3DR) were used to monitor the construction and in vivo transplantation of tissue engineered bone (TEB), to provide for technology in selection of scaffolds and three-dimensional constructional methods. Methods After bone marrow mesenchymal stem cells (BMSCs) were isolated from a 2-year-old green goat by a combination method of density gradient centrifugation and adherent culture, and the expressions of CD29, CD60L, CD45, and CD44 in BMSCs were detected by flow cytometry. Plasmid of pLEGFP-N1 was ampl ified, digested by enzymes (Hind III, BamH I, Sal I, and Bgl II), and identified. Transfection of pLEGFP-N1 into PT67 cells was performed under the help of l iposome. Positive PT67 cells were picked out with G418, and prol iferated for harvesting virus. Based on the titre of virus, after BMSCs were infected by virus containing pLEGFP-N1, GFP positive BMSCs were collected and prol iferated for seeding cells. TEB was fabricated by GFP positive BMSCs and decalcified bone matrix (DBM) and observed by CLSM-3DR for the evaluation of the distribution and prol iferation of seeding cells. After TEB was transplanted in the defect of goat femur, CLSM was used for observing the survival and distribution of GFP positive cells in the grafts. Results The isolated cells were fibroblast-l ike morphous, with the positive expression of CD29 and CD44, and negative expression of CD60L and CD45. The digested production of pLEGFP-N1 was collected for ionophoresis, whose results showed the correct fragment length (6 900 bp). The virus of pLEGFP-N1 was harvested by transfection of pLEGFP-N1 into PT67 cells and used for further infection to obtain GFP positive BMSCs. The prol iferated GFP positive BMSCs and DBM were used for fabrication of TEB. The distribution, prol iferation, and migration of BMSCs in TEB were observed by CLSM-3DR. GFP positive cells also were observed in images of TEB graft in goat femur 28 days after transplantation. Conclusion The BMSCs labeled by GFP in three-dimensional scaffold in vivo were monitored well by CLSM-3DR. It suggests a wide use potency in monitoring of three-dimensional cultured TEB.