west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "JING Jun" 3 results
  • Local helix parameters fitting of proteins based on dual quaternions registration method

    A fitting method of calculating local helix parameters of proteins based on dual quaternions registration fitting (DQRFit) is proposed in this paper. First, the C and N atom coordinates of each residue in the protein structure data are extracted. Then the unregistered data and reference data are constructed using the sliding windows. The square sum of the distance of the data points before and after registration is regarded as an optimization goal. We calculate the optimal rotation matrix and the translation vector using the dual quaternion registration algorithm, and get the helix parameters of the secondary structure which contain the number of residues per turn(τ), helix radius(ρ)and helix pitch(p). Furthermore, we can achieve the fitting of three-helix parameters of τ, ρ, p simultaneously with the dual quaternion registration, and can adjust the sliding windows to adapt to different error levels. Compared with the traditional helix fitting method, DQRFit has some advantages such as low computational complexity, strong anti-interference, and high fitting accuracy. It is proven that the precision of proposed DQRFit for α helix detection is comparable to that of the dictionary of secondary structure of proteins (DSSP), and is better than that of other traditional methods. This is of great significance for the protein structure classification and functional prediction, drug design, protein structure visualization and other fields in the future.

    Release date:2018-02-26 09:34 Export PDF Favorites Scan
  • Research on mild cognitive impairment diagnosis based on Bayesian optimized long-short-term neural network model

    The recurrent neural network architecture improves the processing ability of time-series data. However, issues such as exploding gradients and poor feature extraction limit its application in the automatic diagnosis of mild cognitive impairment (MCI). This paper proposed a research approach for building an MCI diagnostic model using a Bayesian-optimized bidirectional long short-term memory network (BO-BiLSTM) to address this problem. The diagnostic model was based on a Bayesian algorithm and combined prior distribution and posterior probability results to optimize the BO-BiLSTM network hyperparameters. It also used multiple feature quantities that fully reflected the cognitive state of the MCI brain, such as power spectral density, fuzzy entropy, and multifractal spectrum, as the input of the diagnostic model to achieve automatic MCI diagnosis. The results showed that the feature-fused Bayesian-optimized BiLSTM network model achieved an MCI diagnostic accuracy of 98.64% and effectively completed the diagnostic assessment of MCI. In conclusion, based on this optimization, the long short-term neural network model has achieved automatic diagnostic assessment of MCI, providing a new diagnostic model for intelligent diagnosis of MCI.

    Release date: Export PDF Favorites Scan
  • A study on the application of cross-frequency coupling characteristics of neural oscillation in the diagnosis of mild cognitive impairment

    In order to fully explore the neural oscillatory coupling characteristics of patients with mild cognitive impairment (MCI), this paper analyzed and compared the strength of the coupling characteristics for 28 MCI patients and 21 normal subjects under six different-frequency combinations. The results showed that the difference in the global phase synchronization index of cross-frequency coupling under δ-θ rhythm combination was statistically significant in the MCI group compared with the normal control group (P = 0.025, d = 0.398). To further validate this coupling feature, this paper proposed an optimized convolutional neural network model that incorporated a time-frequency data enhancement module and batch normalization layers to prevent overfitting while enhancing the robustness of the model. Based on this optimized model, with the phase locking value matrix of δ-θ rhythm combination as the single input feature, the diagnostic accuracy of MCI patients was (95.49 ± 4.15)%, sensitivity and specificity were (93.71 ± 7.21)% and (97.50 ± 5.34)%, respectively. The results showed that the characteristics of the phase locking value matrix under the combination of δ-θ rhythms can adequately reflect the cognitive status of MCI patients, which is helpful to assist the diagnosis of MCI.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content