Objective To compare the efficacy of intravitreal injection of ranibizumab and bevacizumab in the treatment of pathological myopia choroidal neovascularization (PM-CNV). Methods It is a retrospective case study. Seventy-nine patients (79 eyes) with PM-CNV were enrolled in this study. There were 26 males (26 eyes) and 53 females (53 eyes), with the mean age of (30.77±5.53) years. The best corrected visual acuity (BCVA), intraocular pressure, slit lamp microscope, fundus color photography, fundus fluorescein angiography, and optical coherence tomography (OCT) were performed. BCVA was recorded as logarithm of the minimum angle of resolution (logMAR). The central retinal thickness (CMT) was measured by OCT (Cirrus HD-OCT). The eyes were divided into bevacizumab treatment group (38 eyes) and ranibizumab treatment group (41 eyes). There was no difference of the mean logMAR BCVA, intraocular pressure and CMT between two groups (t=−0.467, −1.983, 1.293;P=0.642, 0.051, 0.200). The eyes in bevacizumab treatment group were treated with bevacizumab 0.05 ml (1.25 mg), and the eyes in ranibizumab treatment group were treated with ranibizumab 0.05 ml (0.5 mg). Times of injection between two groups were compared. The changes of intraocular pressure were observed at 1, 7 days and 1 month after treatment. The changes of logMAR BCVA and CMT at 1, 3, 6, 12 and 24 months after treatment and systemic adverse reactions occur were compared. Results At the 1, 3, 6, 12 and 24 months after treatment, the mean logMAR BCVA of the bevacizumab treatment group and the ranibizumab treatment group was significantly improved than that before treatment (F=132.374,P<0.01). There was no significant difference in the mean logMAR BCVA at different time points between the two groups (F=0.095,P=0.759). The mean CMT of the two groups was lower than that before treatment (F=151.653,P<0.01). There was no significant difference in the mean CMT between the two groups (F=0.332,P=0.566). No retinal detachment, endophthalmitis, cataract and persistent high intraocular pressure were associated with drug, injection-related eye and systemic adverse events during follow-up. Seven eyes had conjunctiva bleeding after treatment, 11 patients (11 eyes) complained of shadow floaters after treatment. Conclusion Intravitreal injection of bevacizumab or ranibizumab can equally effectively improve the visual acuity and reduce the CMT of PM-CNV patients.
ObjectiveTo observe the correlation between posterior myopic retinoschisis(MRS) and posterior scleral staphyma (PS) in pathological myopia (PM), and to preliminarily explore the influencing factors of MRS.MethodsA retrospective case series study. From November 2016 to November 2019, 38 patients with PM with MRS diagnosed in Henan Eye Hospital & Henan Eye Institute from were included in the study. There were 10 males and 28 females; 13 patients were binocular and 25 patients were monocular. The average age was (49±13) years old. BCVA, retinoscopy optometry, frequency domain OCT, three-dimensional magnetic resonance imaging (3D-MRI) examination and axial length (AL) measurement were performed. According to the frequency domain OCT inspection results, MRS was divided into inner splitting, outer splitting and mixed splitting; based on the 3D-MRI scan results, PS was divided into broad macula, narrow macula,discoid, nasal, subdisc and other types. The correlation between MRS and PS was tested by χ2 test or Fisher exact test.ResultsAmong 60 eyes, 58 eyes (96.77%) of MRS combined with PS. Among them, the wide macula, narrow macula, discoid, nasal, subdisc, and other types were 30 (51.72%), 19 (32.75%), 1 (1.72%), 2 (3.48%), 2 (3.48%) and 4 (6.85%) eyes; inner split, outer split, and mixed split were 10 (17.24%), 24 (41.38%), 24 (41.38%) eyes. Of the 19 eyes with narrow macular PS, MRS involved the fovea in 16 eyes; of the 39 eyes with PS of other forms, MRS involved the fovea in 22 eyes. There was a statistically significant difference between the narrow macular type and other types involving foveal eyes (P=0.044). The correlation between MRS involving the fovea and narrow macular PS was moderate (Cramer's V=0.275). The ages of patients with inner split, outer split, and mixed split were 44±12, 56±10, and 44±13 years, respectively. Patients with inner splitting were younger than those with outer splitting, and those with outer splitting were older than those with inner splitting and mixed splitting. The differences were statistically significant (P=0.010, 0.010, 0.060).ConclusionPM with MRS mostly occur in PS-affected eyes, and mainly macular PS (wide macula, narrow macula).
ObjectiveTo identify the pathogenic genes and mutations in a family with Usher syndrome type 2.MethodsA three-generation family including 7 individuals was enrolled in this study. There were 2 male patients and 5 unaffected individuals. All participants was underwent related ophthalmologic examination, including best corrected visual acuity, slit-lamp, indirect ophthalmoscopy, electroretinogram (ERG), optical coherence tomography and visual field test. DNA was extracted from 3 ml peripheral venous blood of all participants. A total of 136 hereditary retinal disease target genes were screened and the DNA sequence was performed by Next-generation sequence analysis. Then the suspected mutations compared with databases to identify the suspected mutations, which should be verified with non-affected family members and 100 normal subjects by PCR and Sanger sequence.ResultsThe sequence result showed that 2 patients, the proband and his brother, carried complex heterozygous mutations in the USH2A gene: c.5459T>C (p.M1820T) in exon 27, c.802G>A (p.G268R) in exon 5 and c.1190T>A (p.I397K) in exon 7. The c.5459T>C and c.1190T>A mutations in USH2A have not been reported in the literature and database. Although their mother carried c.5459T>C (p.M1820T) and c.802G>A (p.G268R), and their father carried c.1190T>A (p.I397K) heterozygous mutations, the parents did not present phenotype. These mutations were not detected in other normal family members. The result was supported by co-segregation analysis.ConclusionThe heterozygous mutations c.5459T>C (p.M1820T), c.1190T>A (p.I397K) and c.802G>A (p.G268R) in USH2A gene cause Usher syndrome in this family.
ObjectiveTo investigate the risk factors of postoperative vitreous hemorrhage after minimal vitrectomy without endotamponade for proliferative diabetic retinopathy (PDR).MethodsFrom June 2015 to June 2017, 103 eyes of 103 patients with PDR diagnosed and underwent minimalvitrectomy in Henan Provincial People's Hospital were enrolled in the study. There were 58 males and 45 females, with the average age of 58.37±10.14 years and diabetes duration of 8.7±7.2 years. Baseline systemic parameters including sex, age, diabetes duration, hypertension, HbA1c, creatinine, whether received anticoagulants, ocular parameters including whether combined with vitreous hemorrhage, whether finished panretinal photocoagulation (PRP), whether received treatment of anti-VEGF, whether combined with iris neovascularization (NVI), lens status preoperatively, whether hypotony postoperatively and intraoperative parameters including whether disc neovascularization (NVD) bleeding, whether fibrovascular membrane (FVM) residual, laser points, whether combined with cataract phacoemulsification were identified by multivariate logistic regression analysis.ResultsTwenty-nine of 103 eyes (28.15%) developed PVH in 1 day to 6 months after surgery, with self absorption of 18 eyes and reoperation of 11 eyes. Univariate analysis showed there were significant differences in age (t=2.124, P=0.036), anti-VEGF(χ2=7.105, P=0.008), NVD bleeding (χ2=10.158, P=0.001) and FVM residual(χ2=8.445, P=0.004) between patients with and without postoperative vitreous hemorrhage. Sex (χ2=0.021, P=0.884), diabetes duration (t=0.87, P=0.386), hypertension (χ2=2.004, P=0.157), HbA1c (t=1.211, P=0.229), creatinine (t=0.851, P=0.397), preoperative oral anticoagulants (χ2=0.985, P=0.321), preoperative vitreous hemorrhage (χ2=0.369, P=0.544), PRP (χ2=1.122, P=0.727), NVI (χ2=2.635, P=0.105), lens status (χ2=0.172, P=0.679), hypotony postoperatively (χ2=1.503, P=0.220), laser points (χ2=1.391, P=0.238) and combined phacoemulsification surgery (χ2=0.458, P=0.499) were not associated with PVH. Multivariate logistic regression analysis revealed the more PVH appeared in younger (OR=1.065, P=0.009) and NVD bleeding (OR=6.048, P=0.001) patients.ConclusionYounger age and NVD bleeding are the important risk factors for PVH after minimal vitrectomy without endotamponade in PDR.
ObjectiveTo report the BEST1 gene mutations and clinical phenotypes in two pedigrees with Best vitelliform macular dystrophy (BVMD) and autosomal recessive bestrophinopathy (ARB).MethodsA retrospective clinical study. From November 2019 to March 2021, in the Department of Ophthalmology of The First Affiliated Hospital of Zhengzhou University, the BVMD family (4 patients and 6 family members) and the ARB family (2 patients, 2 family members), a total of 6 patients and 8 normal family members were included in the study. Detailed medical history was obtained; best corrected visual acuity, fundus color photography, electrophysiology, optical coherence tomography and fundus autofluorescence examination were performed. The clinical characteristics for all patients in the two families were analyzed. Three milliliter peripheral venous blood of all participants in the family was collected, and the whole genomic DNA was extracted with gene sequencing using next-generation sequencing technology based on targeted capture. Compared with the database to identify the pathogenicity mutation sites, suspected pathogenic mutation sites were selected, then mutations in other members in the family was assayed by Sanger sequencing. ResultsIn family 1, the proband was demonstrated as typical BVMD, other patients were multifocal vitelliform macular dystrophy. The DNA sequencing result showed that all the 4 patients carried heterozygous missense mutations in exon 3 of BEST1 gene: c.240C>G (p.F80L) (M1) and 2 members carried this mutation, but without clinical phenotype. M1 was a likely-pathogenic mutation reported for the first time. In family 2, the proband and the other patient were diagnosed as ARB. The DNA result showed that the 2 patients carried heterozygous missense mutations in exon 5 and exon 2 of BEST1 gene: c.584C>T (p.A195V) (M2)、c.139C>A (p.R47S) (M3), and a heterozygous frameshift mutation in exon 3 of BEST1 gene: c.235dupT (p.S79Ffs*153) (M4). M2 was a pathogenic mutation reported previously. M3 variant was of undetermined significance. M4 was a first reported pathogenic mutation. ConclusionsThe BEST1 gene mutation is the main cause of BVMD and ARB. Different mutation sites have different clinical phenotypes. BVMD and ARB have genetic and clinical heterogeneity.
ObjectiveTo compare the quantitative measurements of the retinal capillary nonperfusion areas in a cohort of proliferative diabetic retinopathy (PDR) patients with fluorescein fundus angiography (FFA) and swept source optical coherence tomography angiography (SS-OCTA), and to determine the intrapersonal variability between examiners.MethodsA cross-sectional study. Eighteen eyes of eleven PDR patients diagnosed in Department of ophthalmology of Henan Provincial People's Hospital from September 2019 to January 2020 were included in this study. FFA was performed using Spectralis HRA+OCT (Germany Heidelberg Company) from and SS-OCTA was performed using VG200D (China Vision Micro Image Corporation). SS-OCTA was used to collect images of retinal layer, superficial capillary plexus (SCP) and deep capillary plexus (DCP). The same observation area was 80°×60° for SS-OCTA and 55° for FFA with both setting centered on the fovea. The forty-nine retinal capillary nonperfusion areas were observed. The area measurement was completed independently by three examiners. Paired sample t test or paired sample Wilcoxon test were used to compare the measured values of retinal capillary nonperfusion areas between the two examination methods and among the three examiners.ResultsThere was no significant difference in the retinal layer, SCP and DCP nonperfusion area measured by FFA and SS-OCTA among the three examiners (P>0.05), and the consistency is good (consistency correlation coefficient>0.9, P<0.05). The nonperfusion area measured by FFA was 0.786 mm2. The median nonperfusion area of retinal layer and SCP measured by SS-OCTA were 0.787 mm2 and 0.791 mm2, respectively, and the average nonperfusion area of DCP was 0.878±0.366 mm2. The nonperfusion area of retinal layer and SCP measured by FFA and SS-OCTA showed no statistically significant difference (P=0.054, 0.198). The nonperfusion area of DCP measured by SS-OCTA was significantly larger than that of FFA, and the difference was statistically significant (P<0.001). The results of repeatability analysis showed that 93.88% (46/49) of the DCP nonperfusion area data measured by SS-OCTA were greater than those measured by FFA.ConclusionThe retinal nonperfusion area of DCP in PDR patients measured by SS-OCTA is larger than that of FFA.
ObjectiveTo study the efficiency and difference of the artificial intelligence (AI) system based on fundus-reading in community and hospital scenarios in screening/diagnosing diabetic retinopathy (DR) among aged population, and further evaluate its application value. MethodsA combination of retrospective and prospective study. The clinical data of 1 608 elderly patients with diabetes were continuously treated in Henan Eye Hospital & Henan Eye Institute from July 2018 to March 2021, were collected. Among them, there were 659 males and 949 females; median age was 64 years old. From December 2018 to April 2019, 496 elderly diabetes patients were prospectively recruited in the community. Among them, there were 202 males and 294 female; median age was 62 years old. An ophthalmologist or a trained endocrinologist performed a non-mydriatic fundus color photographic examination in both eyes, and a 45° frontal radiograph was taken with the central fovea as the central posterior pole. The AI system was developed based on the deep learning YOLO source code, AI system based on the deep learning algorithm was applied in final diagnosis reporting by the "AI+manual-check" method. The diagnosis of DR were classified into 0-4 stage. The 2-4 stage patients were classified into referral DR group. ResultsA total of 1 989 cases (94.5%, 1 989/2 104) were read by AI, of which 437 (88.1%, 437/496) and 1 552 (96.5%, 1 552/1 608) from the community and hospital, respectively. The reading rate of AI films from community sources was lower than that from hospital sources, and the difference was statistically significant (χ2=51.612, P<0.001). The main reasons for poor image quality in the community were small pupil (47.1%, 24/51), cataract (19.6%, 10/51), and cataract combined with small pupil (21.6%, 11/51). The total negative rate of DR was 62.4% (1 241/1 989); among them, the community and hospital sources were 84.2% and 56.3%, respectively, and the AI diagnosis negative rate of community source was higher than that of hospital, and the difference was statistically significant (χ2=113.108, P<0.001). AI diagnosis required referral to DR 20.2% (401/1 989). Among them, community and hospital sources were 6.4% and 24.0%, respectively. The rate of referral for DR for AI diagnosis from community sources was lower than that of hospitals, and the difference was statistically significant (χ2=65.655, P<0.001). There was a statistically significant difference in the composition ratio of patients with different stages of DR diagnosed by AI from different sources (χ2=13.435, P=0.001). Among them, community-derived patients were mainly DR without referral (52.2%, 36/69); hospital-derived patients were mainly DR requiring referral (54.9%, 373/679), and the detection rate of treated DR was higher (14.3%). The first rank of the order of the fundus lesions number automatically identified by AI was drusen (68.4%) and intraretinal hemorrhage (48.5%) in the communities and hospitals respectively. Conclusions It is more suitable for early and negative DR screening for its high non-referral DR detection rate in the community. Whilst referral DR were mainly found in hospital scenario.
ObjectiveTo observe and analyze the macular choroidal thickness and choroidal blood perfusion (CBP) in eyes with idiopathic macular hole (IMH) and their correlation. MethodsA cross-sectional observational clinical study. From March 2019 to October 2021, 60 IMH patients with 60 eyes (IMH group) and 60 healthy volunteers with 60 eyes (control group) who consecutively visited Department of Ophthalmology of The First Affiliated Hospital of Zhengzhou University were included in the study. Among the 60 eyes in the IMH group, 8, 8, 15, and 29 eyes were at stage Ⅰ, Ⅱ, Ⅲ, and Ⅳ, respectively. There was no significant difference in age, spherical equivalent power and axial length between the two groups (t=1.327, 0.157, 0.542; P>0.05). The average macular choriodal thickness (AMCT) and CBP in different regions of the macular region of the examined eye were measured using a swept-frequency light source optical coherence tomography scanner. According to the zoning method for the treatment of diabetic retinopathy, the choroid within 6 mm of the fovea was divided into 3 concentric circles with the fovea as the center. They are the central area with a diameter of 1 mm, the inner ring area of 1-3 mm, and the outer ring area of 3-6 mm; the inner ring area and the outer ring area were divided into 4 areas by 2 radiations respectively, including the upper part of the inner superior (IS), the lower part of the inner inferior (Ⅱ), and the nasal side of the inner nasal (IN), inner temporal (IT), outer superior (OS), outer inferior (OI), outer nasal (ON), outer temporal (OT), a total of 9 regions. The distribution characteristics of AMCT and CBP in different regions were observed. The correlation between AMCT and CBP was analyzed by Pearson correlation; the correlation between AMCT, CBP and IMH stage was analyzed by Spearman correlation. ResultsCompared with the eyes of the control group, the AMCT of the affected eyes in the IMH group was significantly thinner in all areas of the macula, and the difference was statistically significant (t=2.378, 4.641, 2.888, 3.390, 3.575, 4.870, 4.077, 4.946, 4.578; P<0.05). Compared with the control group, the CBP in the OS and OT regions of the affected eyes in the IMH group was significantly lower, the difference was statistically significant (t=3.424, 4.516; P<0.05). The results of Pearson correlation analysis showed that there was a significant positive correlation between AMCT and CBP in the OT region (r=0.314, P<0.001). Spearman correlation analysis showed that there was a significant positive correlation between AMCT and IMH staging in each region (r=0.375, 0.374, 0.289, 0.379, 0.441, 0.392, 0.303, 0.341, 0.292; P<0.05). There was no significant correlation between CBP and IMH staging in IN, OI and OT regions (r=-0.138, -0.016, -0.221; P>0.05); CBP and IMH staging in other regions were significantly negatively correlated (r=-0.560, -0.390, -0.819, -0.692, -0.329, -0.587; P<0.05). ConclusionsThe choroidal thickness in the macular region of the eyes with IMH is significantly thinner than that of the normal subjects; there is choroidal hypoperfusion in local areas. There is a significant positive correlation between local regional AMCT and CBP; IMH stage is higher, the trend of AMCT in each region is thickening, and the CBP in most regions decrease.
Objective To observe the anastomotic status of the vortex veins in patients with central serous chorioretinopathy (CSC). MethodsA cross-sectional study of clinical practice. From July 2021 to July 2022, 50 cases (50 eyes) of monocular CSC patients diagnosed through ophthalmic examination at the First Affiliated Hospital of Zhengzhou University were included in the study. Among them, there were 37 males (74.0%, 37/50) and 13 females (26.0%, 13/50), with the mean age of (44.30±9.59) years old. The course of disease from the onset of symptoms to the time of treatment was less than 3 months. The affected eye and contralateral eye of CSC patients were divided into the affected eye group and contralateral eye group, respectively. Fifty healthy volunteers of the same age and gender were selected as the normal control group with 50 eyes. The macular area scanning source optical coherence tomography (OCT) vascular imaging examination was performed with Visual Microimaging (Henan) Technology Co., Ltd. VG200D. Horizontal watershed vortex veins anastomosis rate and asymmetric vortex-venous dilation rate were observed by en face OCT. The device comes with software to calculate the central foveal choroidal thickness (SFCT), mean choroidal thickness (MCT), and choroidal vascular index (CVI). One-way analysis of variance and χ2 test were used to compare the three groups. When variances were unequal between groups, nonparametric tests were performed. ResultsThe SFCT values of the affected eye group, contralateral eye group, and normal control group were (567.12±129.02), (513.26±133.17), (327.64±97.40) μm, respectively; MCT were (407.38±97.54), (388.24±94.13), (275.46±60.55) μm, respectively; CVI were 0.34±0.05, 0.32±0.04, and 0.27±0.04, respectively; anastomosis rates of vortex veins were 98% (49/50), 78% (39/50), and 40% (20/50), respectively; asymmetric dilation rates of vortex veins were 96% (48/50), 88% (44/50), and 48% (24/50), respectively. The differences of SFCT (F=53.974), MCT (Z=51.415), CVI (F=28.082), vortex vein anastomosis rate (χ2=43.056), asymmetric dilation rate of vortex veins (χ2=37.728) among three groups were statistically significant (P<0.001). Compared with the contralateral eye group, the SFCT, MCT, CVI, vortex vein anastomosis rate, and vortex vein asymmetric dilation rate in the affected eye group were significantly higher than those in the contralateral eye group. Among them, the differences of SFCT (t=2.054), CVI (t=2.211), and vortex vein anastomosis rate (χ2=9.470) were statistically significant (P<0.05); the differences of MCT (Z=7.490), asymmetric dilation rate of vortex veins(χ2=2.714) were not statistically significant (P=1.000, 0.140). ConclusionsSFCT, MCT, and CVI in the affected and contralateral eyes of monocular CSC patients significantly increase. The anastomotic rate and asymmetric dilation rate of the vortex vein in the opposite eye were lower than those in the affected eye.
Objective To quantitatively evaluate the changes of choroidal biomarkers in patients with central serous chorioretinopathy (CSC) and preliminarily explore its pathogenesis. MethodsClinical cross-sectional study. From July 2021 to December 2022, 74 eyes of 65 patients with CSC (CSC group) confirmed by ophthalmic examination at the First Affiliated Hospital of Zhengzhou University were included in the study. Among them, 46 patients (51 eyes) were male, 19 patients (23 eyes) were female. The duration from the onset of symptoms to the time of treatment was less than or equal to 3 months. A control group consisted of 40 healthy volunteers (74 eyes) matched in age and gender. Among them, 26 patients (50 eyes) were male, and 14 patients (24 eyes) were female. Using VG200D from Microimaging (Henan) Technology Co., Ltd., macular scanning source light coherence tomography angiography was performed, with scanning range 6 mm × 6 mm. According to the division of the diabetes retinopathy treatment research group, the choroid within 6 mm of the macular fovea was divided into three concentric circles centered on the macular fovea, namely, the central area with a diameter of 1 mm, the macular area with a diameter of 1-3 mm, and the surrounding area of the fovea with a diameter of 3-6 mm. The device comes with software to record the three-dimensional choroidal vascular index (CVI), choroidal vascular volume (CVV), perfusion area of the choroidal capillary layer (CFA), choroidal thickness (CT), and three-dimensional CVI, CVV, and CT in the upper, temporal, lower, and subnasal quadrants within 6 mm of the fovea. Quantitative data between the two groups were compared using an independent sample t-test. Qualitative data comparison line χ2 inspection. The value of receiver operating curve (ROC) analysis in predicting the occurrence of CSC, including CVI, CVV, CFA, and CT. ResultsCompared with the control group, the CVI (t=3.133, 4.814), CVV (t=7.504, 9.248), and CT (t=10.557, 10.760) in the central and macular regions of the affected eyes in the CSC group significantly increased, while the CFA (t=-8.206, -5.065) significantly decreased, with statistically significant differences (P<0.05); CVI (t=7.129), CVV (t=10.020), and CT (t=10.488) significantly increased within 6 mm of the central fovea, while CFA (t=-2.548) significantly decreased, with statistically significant differences (P<0.05). The CVI (t=4.980, 4.201, 4.716, 8.491), CVV (t=9.014, 7.156, 7.719, 10.730), and CT (t=10.077, 8.700, 8.960, 11.704) in the upper, temporal, lower, and lower nasal quadrants within 6 mm of the central fovea were significantly increased, with statistically significant differences (P<0.05). In the CSC group, the maximum CVI and CVV were (0.39±0.10)% and (1.09±0.42) mm3, respectively, on the nasal side of the affected eye. Upper CT was (476.02±100.89) μm. The nasal side CVI, CVV, and CT have the largest changes. The ROC curve analysis results showed that the area under the curve of CT, CVV, and CVI within 6 mm of the central region, macular region, and fovea was over than 0.5. Subcentral CT was the most specific for the diagnosis of CSC. ConclusionChoroidal biomarkers CVI, CVV, and CT in CSC patients increase, while CFA decreases. Central CT is the most specific for the diagnosis of CSC.