west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "LI Chenkai" 1 results
  • Effect of icariin/attapulgite/collagen type Ⅰ/polycaprolactone composite scaffold in repair of rabbit tibia defect

    Objective To investigate the effect of icarin/attapulgite/collagen type Ⅰ/polycaprolactone (ICA/ATP/Col Ⅰ/PCL) composite scaffold in repair of rabbit tibia defect. Methods The ICA/20%ATP/Col Ⅰ/PCL (scaffold 1), ICA/30%ATP/Col Ⅰ/PCL (scaffold 2), 20%ATP/Col Ⅰ/PCL (scaffold 3), and 30%ATP/Col Ⅰ/PCL (scaffold 4) composite scaffolds were constructed by solution casting-particle filtration method. The structure characteristics of the scaffold 2 before and after cross-linking were observed by scanning electron microscopy, and the surface contact angles of the scaffold 2 and the scaffold 4 were used to evaluate the water absorption performance of the material. The in vitro degradation test was used to evaluate the sustained-release effect of the scaffold 2. Thirty male Japanese white rabbits, weighing (2.0±0.1) kg, were randomly divided into groups A, B, C, D, and E, 6 in each group. After making a 1 cm- diameter bilateral tibial defects model, group A was the defect control group without any material implanted. Groups B, C, D, and E were implanted with scaffolds 3, 4, 1, and 2 at the defect sites, respectively. At 4, 8, and 12 weeks after operation, the repairing effects of 4 scaffolds were observed by gross observation, histological observation of HE and Masson staining, and immunohistochemical staining of osteogenic specific transcription factor (runt-related transcription factor 2, RUNX2), osteogenic related transcription factor [Osterix (OSX), Col Ⅰ, osteopontin (OPN)]. Results Scanning electron microscopy observation showed that the scaffolds were all porous. The structure of the material was loose before and after cross-linking. The surface contact angle showed that the scaffold was hydrophobic, and the scaffold 2 was more hydrophobic than scaffold 4. The sustained-release effect in vitro showed that the drug could be released in a micro and long-term manner. In the animal implantation experiment, the gross observation showed that the defects were significantly smaller in groups D and E than in groups A, B, and C at 4 and 12 weeks after operation. HE and Masson staining showed that the defect of group A was full of connective tissue at 4 weeks after operation, a large number of fibers were seen in groups B and C, and the new bone formation was observed in groups D and E. The increase of new bone was observed in each group at 8 weeks after operation. The defect of group A was still dominated by connective tissue at 12 weeks after operation, and a small amount of new bone tissue was observed in groups B and C, and a large number of new bone tissue was observed in groups D and E, especially in group E, and most of the materials degraded. Immunohistochemical staining showed that the expressions of RUNX2 and OSX in the new tissues of groups D and E were significantly higher than those of the other groups at 4 weeks after operation. The expression of RUNX2 decreased at 8 and 12 weeks after operation. After 8 weeks and 12 weeks, the expressions of Col Ⅰand OPN increased than in 4 weeks. And the expressions of Col Ⅰ and OPN in the new tissues of groups D and E were significantly more than those of the other groups. Conclusion ICA/ATP/Col I/PCL composite scaffolds have good porosity and biocompatibility, can promote bone formation, and have good bone regeneration and repair effect.

    Release date:2019-08-23 01:54 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content