Objective To investigate the effects of ginkgo biloba extract (GBE) on expressions of IL-1β, IL-6,and TNF-α in the pancreas and brain tissues of rats with severe acute pancreatitis (SAP), and further to explore the pathogenesis of SAP and the efficacy of GBE on brain injury. Methods Fifty-four Winstar rats were randomly divided into normal control group, model group, and treatment group, with 18 rats for each group. For rats in the normal control group, only conversion of pancreas was performed by abdomen opening , followed by wound closure immediately. For rats in the model group and treatment group, 5% sodium taurocholate hydrate were injected under pancreatic capsule to establish SAP model, and then GBE and normal saline were infected into intra-abdomen repeatedly every 8 hours, respectively. At 6 h, 12 h, and 24 h after the model establishment, experimental samples were extracted and serum amylase was detected. Pathogenic scoring for pancreas tissues was performed under light microscopy, and immunohistochemistry method was employed to detect the expression levels of IL-1β, IL-6, and TNF-α in pancreas and brain tissues. Results For the treatment group, both serum amylase and pancreas scoring were significantly lower than those of the model group (P<0.01). At 24 h after model establishment, the expressions of IL-1β, IL-6, and TNF-α of pancreas tissues in model group were significantly higher than those at 6 h and 12 h (P<0.05 or P<0.01), but no significant differences wereobserved in treatment group (P>0.05). The expressions of IL-1β, IL-6, and TNF-α of brain tissues in model group were significantly higher than those at 6 h and 12 h (P<0.05 or P<0.01), but in treatment group decreased (P<0.05 or P<0.01). The expressions of IL-1β, IL-6, and TNF-α in the treatment group were significantly lower than those of the model group at same time (P<0.01). Conclusions During SAP, the expressions of IL-1β, IL-6 and TNF-α in pancreas and brain tissues increased obviously. GBE showed suppressing and scavenging effects on IL-1β, IL-6 and TNF-α in pancreas and brain tissues.