west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "LI Fuxiang" 3 results
  • Silencing CDH1 gene promotes metastasis and invasion of non-small cell lung cancer A549 cell line

    ObjectiveTo explore the effect of small interference RNA (siRNA) on the metastasis and invasion of A549 cells after silence the E-cadherin gene (CDH1).MethodsThe CDH1 gene in A549 cells was silenced by siRNA technology, and RT-QPCR and Western blot were used to detect the gene expression and protein expression after silencing. The cells were divided into control group (Control), siRNA negative group (siRNA-NC) and siRNA gene silencing group (siRNA-CDH1). CCK-8 detected cell viability after the gene silencing in 12 h, 24 h, 48 h and 72 h, and cell scratch test to detect cell migration ability. Transwell chamber was used to detect cell invasiveness, and Western blot method was used to detect the expression level of key factors which involved in cell migration, invasion, such as vimentin, matrix metalloproteinases (MMP-2 and MMP-9), and N-cadherin. RT-QPCR was employed to detect the mRNA expression of vimentin, MMP-2, MMP-9, Slug and Snail.ResultsAfter CDH1 silencing, the activity of A549 cells increased significantly and was time-dependent, compared with Control group and siRNA-NC group (P<0.05). The cell scratch test and Transwell chamber test showed that the cell migration and invasion ability increased significantly after CDH1 silencing, compared with Control group and siRNA-NC group (P<0.05). The expression of vimentin, MMP-9, MMP-2 and N-cadherin in siRNA-CDH1 group increased significantly. The mRNA expression level of vimentin, MMP-9, MMP-2 and Slug and Snail also increased. Compared with Control group and siRNA-NC group, the difference was statistically significant (P<0.05).ConclusionCDH1 plays an important role in tumor proliferation and invasion, and its deletion can increase the proliferation and invasion ability of A549 cells.

    Release date:2019-09-25 09:48 Export PDF Favorites Scan
  • Effect of hypoxic preconditioning on rat lungs exposed to simulated high altitude hypoxia

    Objective To investigate the influence of hypoxic preconditioning on pulmonary structure of rats exposed to simulated high altitude hypoxia and to explore the role of hypoxia inducible factor-1α(HIF-1α).Methods Fifty-six Wistar rats were randomly divided into 7 groups(n=8 in each group),ie,a normal control group(N group),an acute hypoxic control group(H0 group),an acute hypoxic group(H1 group),a 3 000 m hypoxic preconditioning group(C3.0 group),a 3 000 m hypoxic preconditioning + acute hypoxic group (C3.1 group),a 5 000 m hypoxic preconditioning group(C5.0 group),and a 5 000 m hypoxic preconditioning + acute hypoxic group(C5.1 group).After treated with hypoxic preconditioning,the animals were exposed to simulated altitude of 6 000 m for 24 hours.Then the protein and mRNA expression of HIF-1α in lung of N,H0,C3.0 and C5.0 groups were assessed by Western blot and RT-PCR,respectively.The lung structure in N,H1,C3.1 and C5.1 groups was observed by light microscope and electron microscope.Results Pulmonary interstitial edema was apparently observed in H1 group,while significantly relieved in two hypoxic preconditioning groups.HIF-1α protein was not detected in rat lungs by Western blot analysis.Compared to N group,the levels of HIF-1α mRNA significantly increased in C3.0 group and C5.0 group(both Plt;0.01).Conclusions Hypoxic preconditioning can relieve hypoxic pulmonary interstitial edema and increase HIF-1α mRNA expression in rat lungs.HIF-1 may be involved in the process of hypoxic preconditioning in rat lungs.

    Release date:2016-09-14 11:56 Export PDF Favorites Scan
  • Research on the role and mechanism of trimetazidine in ICU-acquired weakness

    Objective To investigate the role and mechanisms of trimetazidine (TMZ) in intensive care unit-acquired weakness (ICU-AW). Methods Seventy wild-type male C57BL/6 mice were selected and the ICU-AW mouse model was constructed by intraperitoneal injection of different concentrations of lipopolysaccharide (LPS). The body weights, grip strengths, and 96-hour survival rates of each group were observed, and the optimal concentration of LPS and time of sampling were screened out, the mRNA and protein expression of the gastrocnemius muscle atrophic proteins Atrogin-1 and muscle-specific RING finger protein 1 (MuRF1) were further detected to verify the success of modelling, and LPS (12 mg/kg) was used as the subsequent modelling concentration according to the preliminary results. After successful modelling, another 70 mice were randomly divided into normal control group (Normal group), LPS solvent (Vehicle) group, LPS group, LPS+TMZ solvent group, LPS+TMZ group, LPS+TMZ+AC-YVAD-CMK (AC) solvent group, and LPS+TMZ+AC group, with 10 mice in each group. The Normal group did not have any intervention; the Vehicle group was injected intraperitoneally with an equal volume of saline with LPS; the remaining groups were injected intraperitoneally with LPS (12 mg/kg); after the completion of the LPS injection, the LPS+TMZ group, the LPS+TMZ+AC solvent group, and the LPS+TMZ+AC group were given TMZ (5 mg/kg) by gastric gavage once a day for 4 days. The LPS+TMZ solvent group was given TMZ equivalent saline gavage once a day for 4 days. The LPS+TMZ+AC group was injected intraperitoneally with the cysteinyl aspartate specific proteinase 1 (Caspase-1) inhibitor AC-YVAD-CMK (AC, 6.5 mg/kg) 1 h before LPS injection, and the LPS+TMZ+AC solvent group was injected with an equal amount of AC solvent phosphate buffer. At the end of TMZ treatment, body weight, grip strength, 96-hour survival rate, mRNA and protein expression of MuRF1, Atrogin-1, Caspase-1, and gasdermin D (GSDMD) in gastrocnemius muscle, as well as serum IL-1β and IL-18 concentrations in mice were detected in each group, and the gastrocnemius muscle was stained with HE to observe histopathological changes. Results Compared with the Normal group, mice in the LPS (12 mg/kg) and LPS (14 mg/kg) groups showed significant decreases in body weight and grasping strength and the weakening was most obvious at 3 - 5 d (P<0.05), but the survival rate of the LPS (12 mg/kg) group was higher than that of the LPS (14 mg/kg) group (P<0.05), the HE staining of gastrocnemius muscle showed that the mice in the LPS (12 mg/kg) group was significantly atrophied compared with that of the Normal group, and the gene and protein expression of MuRF1 and Atrogin-1 were significantly elevated (P<0.05), and the mice injected with LPS (12 mg/kg) for 4 days (96 h) were finally selected as the conditions for subsequent experimental modelling and sampling.The mRNA and protein expression of Caspase-1 and GSDMD in skeletal muscle was significantly higher in the LPS group compared with the Normal and Vehicle groups (P<0.01), and the concentrations of serum IL-1β and IL-18 were significantly higher(P<0.01). Mice in the TMZ group showed significant improvement in body weight, grip strength, survival rate, and degree of muscle atrophy compared with the LPS and TMZ solvent groups (P<0.05); gene and protein levels of MuRF1, Atrogin-1, Caspase-1, and GSDMD in the gastrocnemius muscle were significantly reduced (P<0.05); and levels of serum IL-1β and IL-18 were significantly reduced (P<0.05) ); the mice in the LPS+TMZ+AC group had significantly improved body weight, grip strength, survival rate, and muscle atrophy compared with the LPS+TMZ group and the LPS+TMZ+AC solvent group (P<0.05), and the gene and protein contents of MuRF1, Atrogin-1, Caspase-1, and GSDMD in the gastrocnemius muscle were reduced (P<0.05), and the serum IL-1β and IL -18 concentrations were reduced (P<0.05). Conclusion TMZ is able to exert a skeletal muscle protective effect by inhibiting Caspase-1/GSDMD-mediated pyroptosis, which is an important reference for the prevention and treatment of ICU-AW.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content