west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "LI Junli" 5 results
  • Role and mechanism of peroxisome proliferator-activated receptor gamma coactivator 1α in inhibiting aortic valve interstitial cell activation

    Objective To investigate the role and mechanism of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) in the activation of aortic valve interstitial cells (AVICs) in aortic stenosis. Methods Isolating primary AVICs and stimulating their activation with transforming growth factor β1 (TGF-β1, 30 ng/mL), the expression of PGC-1α was detected. The activation of AVICs induced by TGF-β1 was observed after overexpression of PGC-1α by adenovirus or inhibition of PGC-1α function by GW9662. The possible downstream molecular mechanism of PGC-1α in AVICs activation was screened. Finally, the phenotype was further verified in primary human AVICs. Results The expression of PGC-1α decreased after the activation of AVICs induced by TGF-β1 (control group: 1.00±0.18; 24 h: 0.31±0.10; 48 h: 0.32±0.06; 72 h: 0.20±0.07; P<0.05). Specific overexpression of PGC-1α by adenovirus inhibited the activation of AVICs induced by TGF-β1 stimulation (periostin: 3.17±0.64 vs. 1.45±0.54, P<0.05; α-smooth muscle actin: 0.77±0.11 vs. 0.28±0.06, P<0.05). On the contrary, inhibition of PGC-1α function by GW9662 promoted the activation of AVICs (periostin: 2.20±0.68 vs. 7.99±2.50, P<0.05). Subsequently, it was found that PGC-1α might inhibit the activation of AVICs through downregulating the expression of calcium/calmodulin-dependent protein kinase (CAMK1δ) (0.97±0.04 vs. 0.74±0.11, P<0.05), and downregulating the expression of CAMK1δ alleviated the activation of AVICs (periostin: 1.76±0.11 vs. 0.99±0.20, P<0.05). The possible mechanism was that the activation of mammalian target of rapamycin (mTOR) signaling pathway was inhibited by reducing the accumulation of reactive oxygen species (ROS) (778.3±139.4 vs. 159.3±43.2, P<0.05). Finally, the protective effect of PGC-1α overexpression was verified in the activated phenotype of human AVICs (periostin: 2.73±0.53 vs. 1.63±0.14, P<0.05; connective tissue growth factor: 1.27±0.04 vs. 0.48±0.09, P<0.05). Conclusions The expression of PGC-1α significantly decreases during the activation of AVICs induced by TGF-β1. The overexpression of PGC-1α significantly inhibites the activation of AVICs, suggesting that PGC-1α plays a protective role in the activation of AVICs. The possible mechanism is that PGC-1α can inhibit the activation of CAMK1δ-ROS-mTOR pathway. In conclusion, interventions based on PGC-1α expression levels are new potential therapeutic targets for aortic stenosis.

    Release date: Export PDF Favorites Scan
  • A Comparative Study on the Results of Liver Function between Olympus AU1000 and Backman CX7 Detection Systems

    Objective To study the comparability of liver function results between the two detection systems. Methods Based on the NCCLS EP9-A document, 8 fresh serum samples were collected daily for the assay of 10 routine liver function parameters by utilizing the Olympus AU1000 and Backman CX7 detection systems respectively. The results were recorded over 5 days consecutively. Linearity equation and relative deviations were calculated. The comparability between the results obtained from different detection systems was evaluated according to the systematic error at medical decision level of CLIA, 88. Results The paired t-test showed that the results of the fresh serum samples had no significant difference between the two detection systems (Pgt;0.05). Except that the systematic error of albumin at low medical decision level exceeded the allowable error, all the other systematic errors at medical decision level were acceptable. Conclusion The results of liver function are comparable between the two detection systems, and the systematic errors between the two detection systems are clinically acceptable.

    Release date:2016-08-25 03:34 Export PDF Favorites Scan
  • Overexpression of miR-130a-3p attenuates cardiomyocyte hypertrophy

    This study aimed to explore the role of miR-130a-3p in cardiomyocyte hypertrophy and its underlying mechanisms. Pressure-overload induced myocardial hypertrophy mice model was constructed by thoracic aortic constriction (TAC). In vitro, norepinephrine (NE) was used to stimulate neonatal rat cardiomyocytes (NRCMs) and H9c2 rat cardiomyocytes to induce hypertrophic phenotypes. The expression of miR-130a-3p was detected in mice hypertrophic myocardium, hypertrophic NRCMs and H9c2 cells. The mimics and inhibitors of miR-130a-3p were transfected into H9c2 cells to observe the role of miR-130a-3p on the hypertrophic phenotype change of cardiomyocytes separately. Furthermore, whether miR-130a-3p regulated hypertrophic related signaling pathways was explored. The results showed that the expression of miR-130a-3p was significantly decreased in hypertrophic myocardium, hypertrophic NRCMs and H9c2 cells. After transfection of miR-130a-3p mimics, the expression of hypertrophic marker genes, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC), and the cell surface area were notably down-regulated compared with the control group (mimics N.C. + NE group). But after transfection of miR-130a-3p inhibitor, the expression of ANP, BNP and β-MHC in H9c2 cells increased significantly, and the cell area increased further. By Western blot, it was found that the protein phosphorylation level of Akt and mTOR were down-regulated after over-expression of miR-130a-3p. These results suggest that miR-130a-3p mimics may alleviate the degree of cardiomyocyte hypertrophy, meanwhile its inhibitor can further aggravate cardiomyocyte hypertrophy. Over-expression of miR-130a-3p may attenuate cardiomyocytes hypertrophy by affecting the Akt pathway.

    Release date:2020-06-28 07:05 Export PDF Favorites Scan
  • Bioinformatics analysis for bicuspid aortic valve with ascending aorta dilation

    Objective To explore the key genes, pathways and immune cell infiltration of bicuspid aortic valve (BAV) with ascending aortic dilation by bioinformatics analysis. Methods The data set GSE83675 was downloaded from the Gene Expression Omnibus database (up to May 12th, 2022). Differentially expressed genes (DEGs) were analyzed and gene set enrichment analysis (GSEA) was conducted using R language. STRING database and Cytoscape software were used to construct protein-protein interaction (PPI) network and identify hub genes. The proportion of immune cells infiltration was calculated by CIBERSORT deconvolution algorithm. Results There were 199 DEGs identified, including 19 up-regulated DEGs and 180 down-regulated DEGs. GSEA showed that the main enrichment pathways were cytokine-cytokine receptor interaction, pathways in cancer, regulation of actin cytoskeleton, chemokine signaling pathway and mitogen-activated protein kinase signaling pathway. Ten hub genes (EGFR, RIMS3, DLGAP2, RAPH1, CCNB3, CD3E, PIK3R5, TP73, PAK3, and AGAP2) were identified in PPI network. CIBERSORT analysis showed that activated natural killer cells were significantly higher in dilated aorta with BAV. Conclusions These identified key genes and pathways provide new insights into BAV aortopathy. Activated natural killer cells may participate in the dilation of ascending aorta with BAV.

    Release date: Export PDF Favorites Scan
  • The interpretation of Korean guidelines for the appropriate use of cardiac CT

    Using the AGREE Ⅱ standard, this paper interpretated from methodological perspective of the Korean Guidelines for Appropriate use of cardiac CT which was made by Korean Society of Radiology and the Korean Society of Cardiology.

    Release date:2017-06-16 02:25 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content