Electroencephalogram (EEG) has been an important tool for scientists to study epilepsy and evaluate the treatment of epilepsy for half a century, since epilepsy seizures are caused by the diffusion of excessive discharge of brain neurons. This paper reviews the clinical application of scalp EEG in the treatment of intractable epilepsy with vagus nerve stimulation (VNS) in the past 30 years. It mainly introduces the prediction of the therapeutic effect of VNS on intractable epilepsy based on EEG characteristics and the effect of VNS on EEG of patients with intractable epilepsy, and expounds some therapeutic mechanisms of VNS. For predicting the efficacy of VNS based on EEG characteristics, EEG characteristics such as epileptiform discharge, polarity of slow cortical potential changes, changes of EEG symmetry level and changes of EEG power spectrum are described. In view of the influence of VNS treatment on patients’ EEG characteristics, the change of epileptiform discharge, power spectrum, synchrony, brain network and amplitude of event-related potential P300 are described. Although no representative EEG markers have been identified for clinical promotion, this review paves the way for prospective studies of larger patient populations in the future to better apply EEG to the clinical treatment of VNS, and provides ideas for predicting VNS efficacy, assessing VNS efficacy, and understanding VNS treatment mechanisms, with broad medical and scientific implications.
Adenoid hypertrophy in children with epilepsy is rarely reported. This paper analyzes the clinical characteristics and incidence of adenoid hypertrophy in children with epilepsy.Methods The clinical data in children with epilepsy from December 2014 to April 2020 in Shenzhen Children's hospital were analyzed retrospectively.Results There were 449 cases diagnosed with adenoid hypertrophy (2.74%) in 16387 children with epilepsy. Among 449 cases of adenoid hypertrophy, 276 males (61.47%) and 173 females (38.53%). The age distribution was: 28 days to 1 year old, 8 cases (2%); 1-3 years old, 78 cases (17%); 3-6 years old 167 cases (37%); 6-12 years old, 153 cases (34%); 12-18 years old, 43 cases (10%). In 40 patients the IgG antibody were positive for EB capsid antigen in 25 (62.5%). In 56 cases of EB virus DNA were detected by fluorescence quantitative PCR, 25 (44.64%) positive, and 21/44 cases (47.72%) were positive by general nucleic acid detection of enteroviruses. The neutrophil reduction rate in peripheral blood was 42.19% in 673 tests, lymphocyteincreased in 292 (43.38%), platelet count increased in 307 (45.61%), abnormal in platelet hematocrit in 311 (46.21%); the mean volume of RBC was decreased in319 (47.39%) tests. The content of \begin{document}${\rm{HCO}_3^-} $\end{document} was reduced in 20/55 cases (36.36%). 25-hydroxy vitamin D was 33 (44.5%) decreased in 74 cases. The blood glucose was measured in 146 cases, 60 (41.09%) increased, total cholesterol was 31 (40.78%) increased in 76 cases, serum C peptide was 12 (29.26%) increased in 41 cases.Conclusion Adenoid hypertrophy in children with epilepsy may be related to infection, inflammation or immune disorder, which may cause nutritional, metabolic or internal environment disorders. Therefore, there is need of nursing and health education, transferring to specialized centers for diagnosis and treatment.