Objective To investigate the risk factors for secondary pulmonary fungal infection in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). And a visual tool using nomogram was developed and validated to assist in the clinical prediction of the probability of pulmonary fungal infection occurrence in AECOPD patients. Methods A retrospective cohort study method was used to collect AECOPD patients hospitalized in the Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College from January 2021 to December 2021 as a training set. And AECOPD patients between January 2020 and December 2020 were collected as a validation set. Independent risk factors were determined through univariate, Lasso regression analyses. and multivariable logistic, A nomogram prediction model was constructed with these independent risk factors, and the nomogram was evaluated by receiver operating characteristic area under the curve (AUC), calibration curve, and decision curve analysis (DCA). Results The use of glucocorticoid, combined use of antibiotics, duration of antibiotic use and hypoalbuminemia were independent risk factors for secondary pulmonary fungal infection in AECOPD patients (all P<0.05). The training set and validation set of the constructed prediction model had an AUC value of 0.915 [95%CI: 0.891 - 0.940] and 0.830 [95%CI: 0.790 - 0.871], respectively. The calibration curve showed that the predicted probability was in good agreement with the actual observed probability of pulmonary fungal infection in AECOPD patients. The corresponding decision curve analysis (DCA) indicated the nomogram had relatively ideal clinical utility. Conclusions The result showed that the use of glucocorticoid, combined use of antibiotics, prolonged antibiotic therapy and hypoalbuminemia was independent risk factors for pulmonary fungal infection in AECOPD patients. The clinical prediction model for secondary pulmonary fungal infection in AECOPD patients constructed in this study has strong predictive power and clinical practicability.
Abstract: Objective To evaluate a new type of treatment that reduces calcification of glutaraldehydetreated bovine jugular venous conduit (BJVC). Methods Fresh bovine jugular veins were treated with glutaraldehyde, followed by Triton X-100 and epoxy chloropropane (EC+Tr group). We compared the group’s appearance, histology, shrinkage temperature, tensile strength, and elongation at break with those of a fresh group, and with a group treated with glutaraldehyde only (GA group). We then implanted the EC+Tr and GA group BJVCs subcutaneously into the backs of SD rats and left them for eight weeks (n=8). The morphologic properties and inflammatory response of the test specimens were evaluated by HE staining. The tissue calcium content was determined by atomic absorption spectrophotometer. Results The shrinkage temperature, tensile strength, and elongation at break of the EC+Tr group were significantly higher than those of the fresh group (86.15±0.92 ℃ vs. 69.94±0.92 ℃,t=35.239, P=0.000; 5.31±0.14 mPa vs.3.15±0.95 mPa,t=6.362, P=0.000; 265.11%±27.80% vs. 16521%±25.06%,t=7.550, P=0.000) and of the GA group (86.15±0.92 ℃ vs. 82.73±1.28 ℃, t=6.137, P=0.000; 5.31±0.14 mPa vs. 4.52±0.56 mPa,t=3.871, P=0.002; 265.11%±27.80% vs.237.85%±17.41%,t=2.351,P=0.034). The tissue structure of the subcutaneously implanted EC+Tr veins remained intact;degradation was slight and they contained few inflammatory cells. The calcium content of the EC+Tr group was lower than that of the GA group (51.22±2.69 μg/mg vs. 73.24±3.82 μg/mg, t=11.545,P=0.000). Conclusion Treatment with Triton X-100 and epoxy chloropropane modification with glutaraldehydetreated bovine jugular venous conduit was an effective way to prepare BJVC that avoided calcification.
ObjectiveTo investigate the effect of optimized arterial perfusion strategy on total arch replacement for acute type A aortic dissection (AAAD) with malperfusion syndrome (MPS).MethodsFrom 2017 to 2019, 51 patients with AAAD and MPS who had received total arch replacement with optimized arterial perfusion strategy in our hospital were included in the optimized perfusion group, including 40 males and 11 females, with an average age of 47.43±13.39 years. A total of 40 patients with AAAD and MPS who had been treated with traditional Sun's surgery were taken as the traditional control group, including 31 males and 9 females, with an average age of 50.66±12.05 years. The perioperative clinical data of the two groups were compared.ResultsThe preoperative baseline data of the two groups were basically consistent (P>0.05). The comparison of operative data between the optimized perfusion group and the traditional control group showed that in the optimized perfusion group, the extracorporeal circulation time, aortic occlusion time, and circulation-out cerebral perfusion time were significantly less than those in the traditional control group (223.64±65.13 min vs. 266.77±87.04 min, 114.48±27.28 min vs. 138.20±39.89 min, 8.28±3.81 min vs. 50.53±23.60 min, all P≤0.05). The lowest intraoperative nasopharyngeal temperature in the optimized perfusion group was significantly higher than that in the traditional control group (27.10±1.18℃ vs. 23.6±3.30℃, P=0.000). Postoperative wakefulness time of the optimized perfusion group was earlier than that of the traditional control group (4.50±1.35 h vs. 5.27±1.15 h, P=0.019). The volume of blood transfusions in the optimized perfusion group was significantly less than that in the traditional control group (13.25±9.06 U vs. 16.95±7.53 U, P=0.046). There was no significant difference in ICU time and invasive ventilation time between the two groups (P>0.05). Postoperative complications of the two groups showed that the incidence of postoperative continuous renal replacement therapy in the optimized perfusion group was significantly lower than that in the traditional control group, with a statistically significant difference (21.6% vs. 42.5% P=0.003). The incidence of postoperative delirium, coma, low cardiac row syndrome and limb ischemia in the optimized perfusion group was lower than that in the traditional control group, but the difference was not statistically significant (P>0.05). The incidence of postoperative hemiplegia, sepsis, and secondary thoracotomy in the optimized perfusion group was higher than that in the traditional control group, and the difference was not statistically significant (P>0.05). Postoperative mortality in the optimized perfusion group was significantly lower than that in the traditional control group (13.7% vs. 27.5%), but the difference was not statistically significant (P=0.102).ConclusionOptimized arterial perfusion strategy and its related comprehensive surgical technique reduce surgical trauma, shorten the operation time, reduce perioperative consumption of blood products. Postoperative wakefulness is rapid and the incidence of complications of nervous system, kidney and limb ischemia is low. Optimized arterial perfusion strategy is suitable for operation of AAAD with MPS by inhibiting the related potential death risk factors to reduce operation mortality.