After Wenchuan earthquake, the West China Second University Hospital immediately started the preparation of emergency pharmaceutical administration. The pharmaceutical department effectively controlled the provision, purchasing, utilization and donation of medications through a double-track operation system. In this way, the medication supply was ensured for both the patients suffering from the disaster and routine patients, which guaranteed the rationality in medication and promoted the utilization of the donated drugs so that more than 80 000 drug cost was saved for the hospital.
ObjectiveThe antifriction and antiwear effects of gelatin nanoparticles (GLN-NP) on artificial joint materials in bionic joint lubricant were investigated to provide a theoretical basis for the development of new bionic joint lubricant. MethodsGLN-NP was prepared by cross-linking collagen acid (type A) gelatin with glutaraldehyde by acetone method, and the particle size and stability of GLN-NP were characterized. The biomimetic joint lubricants with different concentrations were prepared by mixing 5, 15, and 30 mg/mL GLN-NP with 15 and 30 mg/mL hyaluronic acid (HA), respectively. The friction reduction and antiwear effects of the biomimetic joint lubricants on zirconia ceramics were investigated on a tribometer. The cytotoxicity of each component of bionic joint lubricant on RAW264.7 mouse macrophages was evaluated by MTT assay. ResultsThe particle size of GLN-NP was about 139 nm, and the particle size distribution index was 0.17, showing a single peak, indicating that the particle size of GLN-NP was uniform. In complete culture medium, pH7.4 PBS, and deionized water at simulated body temperature, the particle size of GLN-NP did not change more than 10 nm with time, indicating that GLN-NP had good dispersion stability and did not aggregate. Compared with 15 mg/mL HA, 30 mg/mL HA, and normal saline, the friction coefficient, wear scar depth, width, and wear volume were significantly reduced by adding different concentrations of GLN-NP (P<0.05); there was no significant difference between different concentrations of GLN-NP (P>0.05). Biocompatibility test showed that the cell survival rate of GLN-NP, HA, and HA+GLN-NP solution decreased slightly with the increase of concentration, but the cell survival rate was more than 90%, and there was no significant difference between groups (P>0.05). ConclusionThe bionic joint fluid containing GLN-NP has good antifriction and antiwear effect. Among them, GLN-NP saline solution without HA has the best antifriction and antiwear effect.