west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "LIU Yunfeng" 3 results
  • Effects of different alveolar bone finite element models on the biomechanical responses of periodontal ligament

    In the study of oral orthodontics, the dental tissue models play an important role in finite element analysis results. Currently, the commonly used alveolar bone models mainly have two kinds: the uniform and the non-uniform models. The material of the uniform model was defined with the whole alveolar bone, and each mesh element has a uniform mechanical property. While the material of the elements in non-uniform model was differently determined by the Hounsfield unit (HU) value of computed tomography (CT) images where the element was located. To investigate the effects of different alveolar bone models on the biomechanical responses of periodontal ligament (PDL), a clinical patient was chosen as the research object, his mandibular canine, PDL and two kinds of alveolar bone models were constructed, and intrusive force of 1 N and moment of 2 Nmm were exerted on the canine along its root direction, respectively, which were used to analyze the hydrostatic stress and the maximal logarithmic principal strain of PDL under different loads. Research results indicated that the mechanical responses of PDL had been affected by alveolar bone models, no matter the canine translation or rotation. Compared to the uniform model, if the alveolar bone was defined as the non-uniform model, the maximal stress and strain of PDL were decreased by 13.13% and 35.57%, respectively, when the canine translation along its root direction; while the maximal stress and strain of PDL were decreased by 19.55% and 35.64%, respectively, when the canine rotation along its root direction. The uniform alveolar bone model will induce orthodontists to choose a smaller orthodontic force. The non-uniform alveolar bone model can better reflect the differences of bone characteristics in the real alveolar bone, and more conducive to obtain accurate analysis results.

    Release date:2021-06-18 04:50 Export PDF Favorites Scan
  • Oral panorama reconstruction method based on pre-segmentation and Bezier function

    For patients with partial jaw defects, cysts and dental implants, doctors need to take panoramic X-ray films or manually draw dental arch lines to generate Panorama images in order to observe their complete dentition information during oral diagnosis. In order to solve the problems of additional burden for patients to take panoramic X-ray films and time-consuming issue for doctors to manually segment dental arch lines, this paper proposes an automatic panorama reconstruction method based on cone beam computerized tomography (CBCT). The V-network (VNet) is used to pre-segment the teeth and the background to generate the corresponding binary image, and then the Bezier curve is used to define the best dental arch curve to generate the oral panorama. In addition, this research also addressed the issues of mistakenly recognizing the teeth and jaws as dental arches, incomplete coverage of the dental arch area by the generated dental arch lines, and low robustness, providing intelligent methods for dental diagnosis and improve the work efficiency of doctors.

    Release date: Export PDF Favorites Scan
  • Accurate tissue flap reconstruction method based on the quadratic surface developability for head and neck soft tissue defects

    Soft tissue defects resulting from head and neck tumor resection seriously impact the physical appearance and psychological well-being of patients. The complex curvature of the human head and neck poses a formidable challenge for maxillofacial surgeons to achieve precise aesthetic and functional restoration after surgery. To this end, a normal head and neck volunteer was selected as the subject of investigation. Employing Gaussian curvature analysis, combined with mechanical constraints and principal curvature analysis methods of soft tissue clinical treatment, a precise developable/non-developable area partition map of the head and neck surface was obtained, and a non-developable surface was constructed. Subsequently, a digital design method was proposed for the repair of head and neck soft tissue defects, and an in vitro simulated surgery experiment was conducted. Clinical verification was performed on a patient with tonsil tumor, and the results demonstrated that digital technology-designed flaps improved the accuracy and aesthetic outcome of head and neck soft tissue defect repair surgery. This study validates the feasibility of digital precision repair technology for soft tissue defects after head and neck tumor resection, which effectively assists surgeons in achieving precise flap transplantation reconstruction and improves patients’ postoperative satisfaction.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content