Objective To establish a rapid, simple, and economic method to prepare osteoporosis (OP) in vitro model. Methods Eighty pairs of fresh goat femur were collected from 18-month-old female goats and were randomly divided into 4 groups (20 pairs in each group). The femur was immersed decalcifying solution (18% EDTA) for 1-5 days (group B), 6-10 days (group C), and 11-15 days (group D), while group A had no treatment as control. Four pairs of femur were taken out every day. Quantitative computed tomography was used to scan the medial and lateral femoral condyles, and the bone mineral density (BMD) was calculated. Electronic universal testing machine was used to do three-point bending test and compress and tensile ultimate strenght test, and the mechanical parameters for femur were calculated. Results With demineralized time passing, BMD of the medial and lateral femoral condyles were downtrend in groups A, B, C, and D, showing significant differences among 4 groups (P lt; 0.05); BMD of the lateral femoral condyle was significantly higher than that of the medial femoral condyle in each group (P lt; 0.05). The three-point bending test showed that broken load, ultimate strength, and elastic modulus of groups A and B were significantly higher than those of groups C and D (P lt; 0.05); but no significant difference was found between groups A and B, and between groups C and D (P gt; 0.05). Compress and tensile ultimate strength test showed that the compress and tensile ultimate strengths were significantly higher in group A than in groups C and D (P lt; 0.05), and in group B than in group D (P lt; 0.05), but no significant difference was found between groups A and B, between groups B and C, and between groups C and D (P gt; 0.05). Conclusion The 18% EDTA immersing for 6-15 days is a fast, simple, economical method to prepare an OP in vitro model of goat femur.
ObjectiveTo investigate the effectiveness of autologous injectable platelet rich fibrin (i-PRF) combined with bone marrow mesenchymal stem cells (BMSCs) for sciatic nerve injury in rats.MethodsBMSCs were isolated and cultured from tibial bone marrow of Sprague Dawley (SD) neonatal rats aged 10-15 days and passaged to the 4th generation. i-PRF was prepared from posterior orbital venous blood of adult SD rats by improved low-speed centrifugation. Twenty-four adult SD rats were selected and randomly divided into 4 groups with 6 rats in each group after the sciatic nerve Ⅲ degree injury model was established by modified crush injury method. Groups A, B, C, and D were injected with BMSCs suspension+autologous i-PRF, autologous i-PRF, BMSCs suspension, and normal saline, respectively. The Basso-Beattie-Bresnahan (BBB) score was used to evaluate the recovery of neurological function of the affected limb of rats every week from 1 to 8 weeks after operation. At 2 months after operation, the rats were sacrificed and the histological changes of sciatic nerve were observed by HE staining. The microstructural changes of nerve fibers, myelin sheath, and nucleus were observed by transmission electron microscope. The expressions of N-cadherin, Nestin, and glial fibrillary acidic protein (GFAP) were detected by Western blot.ResultsNo immune rejection or death occurred in the rats after operation. There was no significant difference in BBB scores between groups at 1 week after operation (P>0.05); at 2-8 weeks after operation, BBB scores in group A were significantly higher than those in groups B, C, and D, and in groups B, C than in group D (P<0.05), there was no significant difference between groups B and C (P>0.05). HE staining showed that the nerve fibers in group A arranged in order, without defect or demyelination; the nerve fibers in group B were not clear and slightly swollen; some of the nerve fibers in group C were disordered and demyelinated; the nerve fibers in group D were not continuous, obviously demyelinated, and some of the nerve adventitia damaged. Transmission electron microscope showed that the structure of nerve fibers in group A was clear, myelin sheath was complete, and nucleus was dense; group B was slightly less than group A; group C had fuzzy structure, demyelination, and hollowing out; group D had disorder structure, demyelination, and hollowing out, and the middle part of nerve adventitia continuity. Western blot detection results showed that there was no significant difference in the relative expression of Nestin between groups (P>0.05). The relative expression of N-cadherin was significantly lower in groups B, C, and D than in group A, in groups C and D than in group B, and in group D than in group C (P<0.05). The relative expression of GFAP was significantly lower in groups B, C, and D than in group A, in group D than in groups B and C (P<0.05); there was no significant difference between groups B and C (P>0.05).ConclusionAutologous i-PRF combined with BMSCs can effectively treat sciatic nerve tissue injury in rats.
ObjectiveTo investigate the effectiveness of proximal femoral nail anti-rotation (PFNA) and cerclage fixation for complicated femoral subtrochanteric fractures.MethodsA clinical data of 74 patients with complicated femoral subtrochanteric fractures, who were admitted between March 2016 and March 2019 and met the criteria, was retrospectively analyzed. Among them, 39 patients were treated with limited open reduction and PFNA combined with cerclage fixation (observation group) and 35 patients were treated with closed reduction and PFNA fixation (control group). There was no significant difference in gender, age, cause of injury, side and type of fracture, and the time from injury to operation (P>0.05). The ratio of postoperative hemoglobin (1, 3, and 5 days) to the preoperative hemoglobin, the operation time, the first weight-bearing time after operation, and the hospital stay were recorded. X-ray films were taken to observe fracture healing in the two groups and bone resorption around the cerclage in the observation group, and the fracture healing time was recorded. Hip function was evaluated by Harris scoring. ResultsThe operation time of the observation group was significantly longer than that of the control group (P<0.05), but the first weight-bearing time and hospital stay were significantly shorter (P<0.05). All patients were followed up 12 months. There was no significant difference in the ratios of post- to pre-operative hemoglobin (1, 3, and 5 days) between the two groups (P>0.05). X-ray film reexamination showed that the fractures of the two groups healed smoothly, and the fracture healing time of the observation group was significantly shorter than that of the control group (t=−12.989, P=0.000). No bone resorption around the cerclage occurred in the observation group. The Harris scores of the observation group were better than those of the control group at 7 days and 1, 2, and 3 months after operation (P<0.05), and there was no significant difference between the two groups at 6 months after operation (t=1.329, P=0.180).ConclusionCompared with PFNA fixation, PFNA combined with cerclage fixation for the complicated femoral subtrochanteric fractures has a shorter operation time, and can obtain immediate stability after fixation, which can meet the needs of patients for early functional exercise.
Objective To investigate the role and relative mechanism of stromal cell derived factorl (SDF-1) secreted by nucleus pulposus cells (NPCs) on the proliferation of vascular endothelial cells (VECs). Methods The NPCs were isolated from the degenerated disc specimens after discectomy. NPCs at passage 1 were transfected with lentivirus-mediated SDF-1 over-expression; transfected and untransfected NPCs at passage 2 were cultured in the three-dimensional alvetex® scaffold, then they were co-cultured with HMEC-1 cells. The morphology of NPCs was observed by scanning electron microscope (SEM), and the apoptosis of HMEC-1 cells was detected by Annexin V/propidiumiodide staining after 72 hours co-culutre. The proliferation of HMEC-1 cells was detected by cell counting kit 8 at 12, 24, 48, and 72 hours in transfected group and untransfected group, respectively. ELISA was used to measure the vascular endothelial growth factor (VEGF) expression level. The virus transfection efficiency and relative Akt pathway were determined by Western blot. Results The NPCs maintained cell phenotype and secreted much extracellular matrix in three-dimensional-culture by SEM observation. In the co-culutre system, after NPCs were transfected with SDF-1 over-expression lentivirus, the proliferation of HMEC-1 cells was significantly increased, while the apoptosis was decreased obviously. The ELISA results demonstrated that the amount of VEGF was remarkably increased in the culture medium. Furthermore, SDF-1 promoted the up-regulation of phosphorylate Akt expression; after inhibition of Akt expression by GSK690693, the proliferation rate of VECs decreased significantly. Conclusion Over-expression of SDF-1 by NPCs is beneficial for VECs proliferation, which is involved in SDF-1-Akt signalling pathway.