west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Labeling" 2 results
  • APPLICATION OF ENHANCED GREEN FLUORESCENT PROTEIN LABELING TECHNOLOGY TO MONITO RING MARROW MESENCHYMAL STEM CELLS MIGRATION AFTER BONE FRACTURE

    Objective To monitor the stem cell migration into the bone defect following an injection of the labeled mesenchymal stem cells (MSCs) by the enha nced green fluorescent protein (EGFP)technology and to provide insights into an application of MSCs for the fracture healing. Methods Isolated MSCs from the rabbit femur marrow were culture-expanded and were labeled by the transfection with the recombinant retrovirus containing the EGFP gene. Then, some labeled MSCs were cultured under the osteogenic differentiation condition and the phenotype was examined. After the fracture of their bilateral ulna, 18 rabbits were divide d into two groups. The labeled MSCs were injected into the aural vein at 1×107 cells/kg in the experimental group and the unmarked MSCs were injected in the control group 24 hours before surgery, and 1 and 24 hours after surgery, res pectively. Necropsies were performed 2 days after surgery in the two groups. The sections from the left defects were observed under the fluorescence microscope and the others were analyzed by the bright-field microscopy after the HE staining. Results The EGFP did not affect the MSCs viability. After the labeled cells were incubated in the osteogenic medium alkaline phosphatase, the calcium nodule s were observed. All the rabbits survived. The tissue of haematoma was observed in the bone defects and the fluorescent cells were found in the experimental gr oup, but no fluorescent cells existed in the control group. Conclusion The EG FP labeled MSCs can undergo osteogenic differentiation in vitro and can mig rate into bone defects after their being injected into the peripheral vein.

    Release date:2016-09-01 09:25 Export PDF Favorites Scan
  • Experimental Study of Rat Bone Marrow Endothelial Progenitor Cells Labeled with SPIO in Vitro

    ObjectiveTo explore optimal conditions of isolation, culture and labeled with superparamagnetic iron oxide (SPIO) in vitro of rat bone marrow endothelial progenitor cells, and lay the foundations for the further EPCs tracer study in vivo. MethodsThe EPCs derived from rat bone marrow were isolated and cultured by using density gradient centrifugation, which were labeled with different concentrations SPIO, Prussian blue staining was used to detect the cells labeling rate, MTT assay was used to detect the cells proliferation activity, and Trypan blue staining was used to detect the cells vitality. ResultsEPCs gradually growed in monolayer arrangement about 7 d after cultured. When the concentration of SPIO was 50μg/mL, the highest labeling rate of Prussian blue staining was 90%, the growth state of labeled EPCs were good, and could normal adherent growth and passage. At this time, the cell viability and proliferation activity were the highest through trypan blue staining and MTT assay. ConclusionsEPCs can be labeled with SPIO easily and efficiently when the concentration was 50μg/mL?without interference on the viability and proliferation activity, which lay the foundations for the further EPCs tracer study in vivo.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content