The coming out of electromagnetic navigation bronchoscopy gives exciting solution for diagnosis and even treatment of peripheral pulmonary nodules. It breaks the barriers of traditional bronchoscopy, and gives live visible imaging guidance for operators during biopsy of peripheral pulmonary nodules. The electromagnetic navigation bronchoscopy system can intelligently recognize and reconstruct the bronchial tree of the patients, and generate visible data and virtual guidance for the operators. It can perceive real-time magnetic localization of the signal, so as to precisely guide the navigational or biopsy tools. This review introduced the artificial intelligence configuration of the electromagnetic navigation bronchoscopy system based on the Veran system, and gave some improvement advices based on the defects of the system. In this way, we hope to promote the development and better clinical application of electromagnetic navigation bronchoscopy system.
Increasing peripheral pulmonary nodules are detected given the growing adoption of chest CT screening for lung cancer. The invention of electromagnetic navigation bronchoscope provides a new diagnosis and treatment method for pulmonary nodules, which has been demonstrated to be feasible and safe, and the technique of microwave ablation through bronchus is gradually maturing. The one-stop diagnosis and treatment of pulmonary nodules can be completed by the combination of electromagnetic navigation bronchoscopy and microwave ablation, which will help achieve local treatment through the natural cavity without trace.
Nowadays, the development of the medical instrument industry makes rapid changes in clinical practice. Hybridization of latest technology is playing an increasingly important role in the diagnosis and treatment of disease. Especially, the trend of the integration of three-channel hybrid technology in diagnosis and treatment of early lung cancer has become increasingly obvious. This paper will focus on the technical advance of the three-channel multi- mirror robot and its application in the diagnosis and treatment of early lung cancer.