Objective To investigate the effect of solid lipid nanoparticles (SLNs) on enhancing the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro by resveratrol (Res), and provide a method for the treatment of bone homeostasis disorders. MethodsRes-SLNs were prepared by high-temperature emulsification and low-temperature solidification method, and then the 2nd-3rd generation BMSCs from Sprague Dawley rat were co-cultured with different concentrations (0, 0.1, 1, 5, 10, 20 μmol/L) of Res and Res-SLNs. The effects of Res and Res-SLNs on the cell viability of BMSCs were detected by cell counting kit 8 (CCK-8) and live/dead cell staining; the effects of Res and Res-SLNs on the osteogenic differentiation of BMSCs were detected by alkaline phosphatase (ALP) staining and alizarin red S (ARS) staining after osteogenic differentiation induction, and the optimal concentration of Res-SLNs for gene detection was determined. Anti-osteocalcin (OCN) immunofluorescence staining and real-time fluorescent quantitative PCR (RT-qPCR) were used to detect the effect of Res and Res-SLNs on osteoblast-related genes (ALP and OCN) of BMSCs. ResultsLive/dead cell staining showed that there was no significant difference in the number of dead cells between Res and Res-SLNs groups; CCK-8 detection showed that the activity of BMSCs in Res group was significantly reduced at the concentration of 20 μmol/L (P<0.05), while Res-SLNs activity was not affected by Res concentration (P>0.05). After osteogenic differentiation, the staining intensity of ALP and ARS in both groups was dose-dependent. The percentage of ALP positive staining area and the percentage of mineralized nodule area in Res group and Res-SLNs group reached the maximum at the concentrations of 10 μmol/L and 1 μmol/L, respectively (P<0.05), and then decreased gradually; the most effective concentration of Res-SLNs was 1 μmol/L. The expression of OCN and the relative expression of ALP and OCN mRNA in Res-SLNs group were significantly higher than those in Res group (P<0.05). ConclusionEncapsulation of SLNs can improve the effect of Res on promoting osteogenesis, and achieve the best effect of osteogenic differentiation of BMSCs at a lower concentration, which is expected to be used in the treatment of bone homeostasis imbalance diseases.