Lung cancer is one of the malignant tumors with the greatest threat to human health, and studies have shown that some genes play an important regulatory role in the occurrence and development of lung cancer. In this paper, a LightGBM ensemble learning method is proposed to construct a prognostic model based on immune relate gene (IRG) profile data and clinical data to predict the prognostic survival rate of lung adenocarcinoma patients. First, this method used the Limma package for differential gene expression, used CoxPH regression analysis to screen the IRG to prognosis, and then used XGBoost algorithm to score the importance of the IRG features. Finally, the LASSO regression analysis was used to select IRG that could be used to construct a prognostic model, and a total of 17 IRG features were obtained that could be used to construct model. LightGBM was trained according to the IRG screened. The K-means algorithm was used to divide the patients into three groups, and the area under curve (AUC) of receiver operating characteristic (ROC) of the model output showed that the accuracy of the model in predicting the survival rates of the three groups of patients was 96%, 98% and 96%, respectively. The experimental results show that the model proposed in this paper can divide patients with lung adenocarcinoma into three groups [5-year survival rate higher than 65% (group 1), lower than 65% but higher than 30% (group 2) and lower than 30% (group 3)] and can accurately predict the 5-year survival rate of lung adenocarcinoma patients.
Medical studies have found that tumor mutation burden (TMB) is positively correlated with the efficacy of immunotherapy for non-small cell lung cancer (NSCLC), and TMB value can be used to predict the efficacy of targeted therapy and chemotherapy. However, the calculation of TMB value mainly depends on the whole exon sequencing (WES) technology, which usually costs too much time and expenses. To deal with above problem, this paper studies the correlation between TMB and slice images by taking advantage of digital pathological slices commonly used in clinic and then predicts the patient TMB level accordingly. This paper proposes a deep learning model (RCA-MSAG) based on residual coordinate attention (RCA) structure and combined with multi-scale attention guidance (MSAG) module. The model takes ResNet-50 as the basic model and integrates coordinate attention (CA) into bottleneck module to capture the direction-aware and position-sensitive information, which makes the model able to locate and identify the interesting positions more accurately. And then, MSAG module is embedded into the network, which makes the model able to extract the deep features of lung cancer pathological sections and the interactive information between channels. The cancer genome map (TCGA) open dataset is adopted in the experiment, which consists of 200 pathological sections of lung adenocarcinoma, including 80 data samples with high TMB value, 77 data samples with medium TMB value and 43 data samples with low TMB value. Experimental results demonstrate that the accuracy, precision, recall and F1 score of the proposed model are 96.2%, 96.4%, 96.2% and 96.3%, respectively, which are superior to the existing mainstream deep learning models. The model proposed in this paper can promote clinical auxiliary diagnosis and has certain theoretical guiding significance for TMB prediction.