The task of automatic generation of medical image reports faces various challenges, such as diverse types of diseases and a lack of professionalism and fluency in report descriptions. To address these issues, this paper proposes a multimodal medical imaging report based on memory drive method (mMIRmd). Firstly, a hierarchical vision transformer using shifted windows (Swin-Transformer) is utilized to extract multi-perspective visual features of patient medical images, and semantic features of textual medical history information are extracted using bidirectional encoder representations from transformers (BERT). Subsequently, the visual and semantic features are integrated to enhance the model's ability to recognize different disease types. Furthermore, a medical text pre-trained word vector dictionary is employed to encode labels of visual features, thereby enhancing the professionalism of the generated reports. Finally, a memory driven module is introduced in the decoder, addressing long-distance dependencies in medical image data. This study is validated on the chest X-ray dataset collected at Indiana University (IU X-Ray) and the medical information mart for intensive care chest x-ray (MIMIC-CXR) released by the Massachusetts Institute of Technology and Massachusetts General Hospital. Experimental results indicate that the proposed method can better focus on the affected areas, improve the accuracy and fluency of report generation, and assist radiologists in quickly completing medical image report writing.
Existing emotion recognition research is typically limited to static laboratory settings and has not fully handle the changes in emotional states in dynamic scenarios. To address this problem, this paper proposes a method for dynamic continuous emotion recognition based on electroencephalography (EEG) and eye movement signals. Firstly, an experimental paradigm was designed to cover six dynamic emotion transition scenarios including happy to calm, calm to happy, sad to calm, calm to sad, nervous to calm, and calm to nervous. EEG and eye movement data were collected simultaneously from 20 subjects to fill the gap in current multimodal dynamic continuous emotion datasets. In the valence-arousal two-dimensional space, emotion ratings for stimulus videos were performed every five seconds on a scale of 1 to 9, and dynamic continuous emotion labels were normalized. Subsequently, frequency band features were extracted from the preprocessed EEG and eye movement data. A cascade feature fusion approach was used to effectively combine EEG and eye movement features, generating an information-rich multimodal feature vector. This feature vector was input into four regression models including support vector regression with radial basis function kernel, decision tree, random forest, and K-nearest neighbors, to develop the dynamic continuous emotion recognition model. The results showed that the proposed method achieved the lowest mean square error for valence and arousal across the six dynamic continuous emotions. This approach can accurately recognize various emotion transitions in dynamic situations, offering higher accuracy and robustness compared to using either EEG or eye movement signals alone, making it well-suited for practical applications.