west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Myocardial ischemia-reperfusion injury" 2 results
  • TARGETED COMBINATION AND ANTI-INFLAMMATORY EFFECTS OF ANTI-INTERCELLULAR ADHESION MOLECULE 1 TARGETED PERFLUOROOCTYLBROMIDE PARTICLES ON MYOCARDIAL ISCHEMIA-REPERFUSION INJURY IN RAT MODEL

    Objective To investigate the targeted combination and anti-inflammatory effects of anti-intercellular adhesion molecule 1 (ICAM-1) targeted perfluorooctylbromide (PFOB) particles on myocardial ischemia-reperfusion injury in rat model. Methods Seventy-six adult Sprague Dawley rats (male or female, weighing 250-300 g) were selected for experiment. The models of myocardial ischemia-reperfusion injury were established by ligating the left anterior descending coronary artery for 30 minutes in 30 rats. The expression of ICAM-1 protein was detected by immunohistochemistry staining at 6 hours after reperfusion, and the normal myocardium of 10 rats were harvested as control; then the content of interleukin 8 (IL-8) in serum was tested every 6 hours from 6 hours to 48 hours after reperfusion. The other 36 rats were randomly divided into 6 groups (n=6): ischemia-reperfusion injury model/targeted PFOB particles group (group A), ischemia-reperfusion injury model/untargeted PFOB group (group B), normal control/targeted PFOB particles group (group C), normal control/untargeted PFOB particles group (group D), ischemia-reperfusion injury model/normal saline group (group E), and sham operation group (group F). The ischemia-reperfusion injury models were established in groups A, B, and E; while a thread crossed under the coronary artery, which was not ligated after open-chest in group F. After 6 hours of reperfusion, 1 mL of corresponding PFOB particles was injected through juglar vein in groups A, B, C, and D, while 1 mL of nomal saline was injected in group E. Ultrasonography was performed in groups A, B, C, and D before and after injection. The targeted combination was tested by fluorescence microscope. The content of IL-8 was tested after 6 and 24 hours of reperfusion by liquid chip technology in groups A, B, E, and F. Results After 6 hours of reperfusion, the expression of ICAM-1 protein significantly increased in the anterior septum and left ventricular anterior wall of the rat model. The content of IL-8 rised markedly from 6 hours after reperfusion, and reached the peak at 24 hours. Ultrasonography observation showed no specific acoustic enhancement after injection of PFOB particles in groups A, B, C, and D. Targeted combination was observed in the anterior septum and left ventricular anterior wall in group A, but no targeted combination in groups B, C, and D. There was no significant difference in the content of IL-8 among groups A, B, and E after 6 hours of reperfusion (P gt; 0.05), but the content in groups A, B, and E was significantly higher than that in group F (P lt; 0.05). After 24 hours of reperfusion, no sigificant difference was found in the content of IL-8 between groups A and B (P gt; 0.05), but the content of IL-8 in groups A and B were significantly lower than that in group E (P lt; 0.05). Conclusion Anti-ICAM-1 targeted PFOB particles can target to bind and pretect injured myocardium of rat by its anti-inflammation effects.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • Myocardial Protection of HTK Solution in Immature Rabbit Myocardium at Different Cardiac Arrest Time

    ObjectiveTo compare the myocardial protective effect of HTK solution and St.ThomasⅡ(STH) solution in immature rabbit myocardium at different cardiac arrest time. MethodsAccording to cardioplegia and cardiac arrest time, 32 immature New Zealand white rabbits (aged 2-3 weeks) were randomly divided into four groups. A group SO (8 rabbits) underwent 1 hour cardiac arrest with STH solution, a group ST (8 rabbits) underwent 2 hours cardiac arrest with STH solution, a group HO (8 rabbits) underwent 1 hour cardiac arrest with HTK solution, a group Ht (8 rabbits) underwent 2 hours cardiac arrest with HTK solution. Compare the myocardial protective effect of HTK and STH solution in immature myocardium at different cardiac arrest time. ResultsThe Langendorff models were successfully established in 30 cases (8 cases in the group SO and HO, 7 cases in the group ST and HT). There were no statistical differences in hemodynamics and myocardial enzyme (CK-MB, LDH) (P > 0.05), but HTK solution reduced the activity of nitric oxide synthase (NOS) and content of malonaldehyde (MDA) and NO, maintained high activity of superoxide dismutase (SOD) and Ca2+-ATPase (P < 0.05), performed more effective myocardial protection for immature myocardium. ConclusionHTK solution has more effective myocardial protection for immature myocardium than STH solution does, but STH solution still has good outcomes within short cardiac arrest time (1h).

    Release date:2016-10-02 04:56 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content