Objective To investigate the effects of epidermal growth factor (EGF),fibroblast growth factor(FGF), and bovine serum on proliferation and apoptosis of the cultured fetal human retinal cells.Methods EGF and FGF were added or not to the medium of fetal human retinal cells cultured by bovine serum in vitro. The number of cells, bromodeoxyuridine(BrdU) incorporation and Tdt-mediated dUTP nick end labelling(TUNEL) were detected to determine the proliferation and apoptosis. Immunohistochemical staining of neuron specific enolase(NSE), Thy1.1, glial fibrillary acidic protein(GFAP) and scan electromicroscopy were performed to identify cell components. The expression of transcription factor c-fos, c-jun and apoptosis regulation factor bcl-2 and Bax were examined by immunohistochemical staining to explore the underlying mechanism.Results The increased number of NSE and Thy1.1 positive cells and BrdU incorporation, and decreased apoptotic cells were found in the groups treated with EGF and FGF. Meanwhile, the up-regulation of c-fos, c-jun and bcl-2 were also found. Conclusion EGF and FGF can promote the survival and proliferation of cultured retinal cells by up-regulating the expression of c-fos, c-jun and bcl-2. (Chin J Ocul Fundus Dis,2003,19:113-116)
Objective To observe whether apoptosis was involved in cells of aspiration fluid from vitrectomy for proliferative vitreoretinopathy(PVR),and whether there was an association with expression of Fas antigen(Fas )and Fas ligand (FasL). Methods Cytocentrifuge slides of 11 fresh vitreous specimens of PVR were prepared to be stained by TUNEL met hod for detection of apoptosis and by immunohistochemical technique for detection of Fas,FasL,and cytokeratin (CK),a cell-type specific antigen. Results Fas and FasL were expressed in normal human retina.Fas,FasL,CK,and apoptosis were found in all preparations.TUNEL-positive cells were 20.53% in total cells.70.35%,51.58%,and 82.97% of cells highly expressed Fas,FasL,and CK,respectively.The linear correlation coefficient of Fas and apoptosis was 0.99(Plt;0.001). Conclusion Vitrectomy specimens of PVR showed expression of Fas,FasL,and apoptosis.Prominent Fas and FasL expressions may be associated with apoptosis of proliferating retinal pigment epithelial cells in the vitreous of PVR. (Chin J Ocul Fundus Dis,1999,15:78-80)
Objective:To study the effects of growth factor on the proliferation of the cultured huamn retinal glial cells. Methods:EGF(0.5~100.0ng/ml) and NGF (0.5~10.0ng/ml) were added to cultures of human retinal glial cells and the proliferation rates of the cells were measured by MTT method. Results:EGF at a dosage ranging from 0.5ng/ml to 100.0ng/ml and NGF (0.05~10.0ng/ml) stimulated the cellular proliferation effectively with their EC 50 of 17ng/ml and 0.7 ng/ml respectively. Conclusion:Both EGF and NGF NGF had an effective stimulation on human retinal glial cell proliferation.They may play a role in the formation of PVR. (Chin J Ocul Fundus Dis,1998,14:33-34)
ObjectiveTo explore the effect and mechanism of netrin-1 on blood-retinal barrier permeability in diabetes mellitus (DM) rats. MethodsEighty Sprague-Dawley rats were randomly divided into the normal control group, DM+balanced salt solution (BSS) group, DM+netrin-1 low dose group and DM+netrin-1 high dose group, with 20 rats in each group. DM rats were induced by intraperitoneal injection of streptozocin (STZ). These rats were feed with high sugar and fat for 3 months after STZ injection. All rats were sacrificed at 1 month after intravitreal injection. Retinal vascular permeability was measured by Evans blue. The expression level of occludin was determined by immunohistochemistry. Hematoxylin-eosin (HE) staining of retina was used to observe the pathological change of DM and the level of occludin mRNA was analyzed by real-time fluorescence quantitative reverse transcription polymerase chain reaction (RT-PCR). Five rats of each group. ResultsHE staining of retina showed that the degree of edema and vascularization in DM+netrin-1 high dose group was better than DM+BSS group. Staining of occludin in retina was limited to nerve fiber layer, ganglion cells, inner plexiform layer and inner nuclear layer in normal rats, but in DM+BSS group, the color of staining positive of occludin was lighter and more reduced. However, DM+ netrin-1 group occludin staining was deepen and enlarged. The result of RT-PCR showed that the expression of occludin mRNA in other three groups was less than normal control group (P < 0.05). The significant difference during DM+BSS group, low dose group and DM+netrin-1 high dose group (F=177.13, P=0.00), and the more concentrate of netrin-1 the higher expression of occluding. Compared the DM+netrin-1 low dose group with DM+BSS group, there was significant difference expression of occludin (t=-13.98, P=0.00). There was significant difference between the DM+netrin-1 high dose group and normal control group (t=12.87, P=0.00). There was statistically significant difference in DM+BSS group, DM+netrin-1 low dose group and DM+netrin-1 high dose group (F=179.69, P=0.00). Compared the two group of different concentration netrin-1, the quantification of vascular permeability in DM+netrin-1 high dose group reduced more (t=12.73, P=0.00). ConclusionsNetrin-1 can protect the blood-retinal barrier in DM rats. Netrin-1 may decrease BRB leakage in DM rats by protecting the expression of occludin.
Objective To observe the effects of the bone marrow mesenchymal stem cells (BMSCs) on the expression of neurotrophic factor protein gene in the retinal detachment (RD) rabbits. Methods 60 healthy rabbits were randomly divided into control group (group A), retinal detachment with PBS group (group B), retinal detachment with BMSCs group (group C), 20 rabbits in each group. RD model were established for rabbits in group B and C. 10 μl PBS was injected into the subretinal space of rabbits in group B, while 10 μl CM-Dil labeled BMSC PBS was injected into subretinal space of rabbits in group C. The rabbits in the group A received no treatment. At 1, 2 and 4 weeks after modeling, the mRNA expression of basic fibroblast growth factor (bFGF), brain derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) were measured by real-time quantitative PCR. Results At 1, 2 and 4 weeks after modeling, the mRNA expression of bFGF, BDNF, CNTF on retinal tissue were increased significantly in group C as compared with group A and B (P < 0.01). At 1 week after modeling, the mRNA expression of bFGF and CNTF on retinal tissue were increased significantly in group B as compared with group A, the mRNA expression of BDNF on retinal tissue in group B was similar with group C. At 2 and 4 weeks after modeling, the mRNA expression of bFGF, BDNF, CNTF were decreased in group B as compared with group A. Conclusion Subretinal transplantation of BMSC can increase the mRNA expression of bFGF, BDNF and CNTF on retinal tissue in RD rabbits.
Objective To observe the effect of different concentration netrin-1 on retinal vascular permeability in diabetes mellitus (DM) rats. Methods Eighty adult Sprague-Dawley rats were randomly divided into 8 groups, 10 rats in each group, including normal control group (group A), normal+balanced salt solution (BSS) group (group B), normal+netrin-1 (500 μg/ml) group (group C) and DM group (50 rats in 5 sub-groups). DM rats were induced by intraperitoneal injection of streptozocin. Three months after intraperitoneal injection, 10 DM rats in the control group were injected with BSS (group D). Forty DM rats were injected with 5 μl of different concentrate netrin-1, and were divided into DM+netrin-1 10 μg/ml group (group E), DM+netrin-1 50 μg/ml group (group F), DM+netrin-1 100 μg/ml group (group G), DM+netrin-1 500 μg/ml group (group H) according to the different concentration. Non-DM rats in group C were injected with netrin-1 500 μg/ml. The expression of occludin was determined by immunohistochemistry for protein, and by real-time fluorescence quantitative reverse transcription polymerase chain reaction for mRNA level. Retinal vascular permeability was measured by Evans blue infusion. Results The expression of occludin protein and mRNA in group D were less than group A (t=27.71, 8.59;P=0.00, 0.00). However, the retinal vascular permeability increased in group D (t=−42.72,P=0.00). The expression of occluding protein, occludin mRNA and retinal vascular permeability showed significant differences between group D, E, F, G and H (F=146.31, 16.54, 67.77;P=0.00, 0.00, 0.00). Compared the group B with group C, there was no significant differences between the expression of occludin protein, occludin mRNA and the retinal vascular permeability (t=−1.13, 0.93, 1.04;P=0.27, 0.36, 0.31). The concentrate of netrin-1 showed a significant positive correlation to the expression level of occludin and occludin mRNA (r=0.73, 0.81;P=0.00, 0.00), but negative correlation to the vascular permeability (r=−0.61,P=0.00). Conclusion Netrin-1 can reduce the DM rats' retinal vascular permeability, which depended on the concentration of netrin-1.
Objective To observe the effect of netrin-1 on retinal Müller cells in diabetes mellitus (DM) rats. Methods Fifty Sprague-Dawley rats were randomly divided into the normal control group (group A), normal + balanced salt solution (BSS) group (group B), normal+netrin-1 group (group C), DM+BSS group (group D) and DM+netrin-1 group (group E), with 10 rats in each group. DM rats were induced by intraperitoneal injection of Streptozotocin (60 mg/kg). The expression level of glial fibrillary acidic protein (GFAP) on retinal Müller cells was determined by immunohistochemistry, the level of GFAP mRNA was analyzed by real-time fluorescence quantitative reverse transcription polymerase chain reaction. Results Immunohistochemistry showed that GFAP was distributed in retinal ganglion cells and retinal nerve fiber layer in group A, B and C. Compared to group B, GFAP staining was brighter in the group D. There were significant differences in the expression of GFAP protein and mRNA among groups A-E (F=203.43, 72.91; P=0.00, 0.00), they were higher in group D than group A (t=−26.01, 22.26; P=0.00, 0.00), and group E (t=−10.78, 3.93; P=0.00, 0.00). They were higher in group E than group A (t=7.00, −9.82; P=0.00, 0.00). There were no significant differences in between group A and group C (t=−0.29, 0.50; P=0.77, 0.62). Conclusion The expression of GFAP in Müller cells of DM rats could be decreased by injecting netrin-1 into vitreous.