west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Nickel-titanium alloy" 3 results
  • DESIGN AND BIOMECHANICAL ANALYSIS OF NICKEL-TITANIUM OPEN SHAPE MEMORY ALLOY ARTIFICIAL VERTEBRAL BODY

    Objective To design an open shape memory alloy artificial vertebral body that can be used to reconstruct the vertebral body in spine diseases, such as thoracic-lumbar spine tumors, burst fracture of the vertebrae, kyphosis and scol iosis, and to evaluate the biomechanical stabil ity of lumbar functional segment unit after insertion with the shape memoryalloy artificial vertebral body. Methods The open shape memory alloy artificial vertebral body with nickel-titanium (NiTi)alloy was made. Eight fresh spine specimens (T14-L5) from normal adult porcine were used to detect the range of motion (ROM) in 4 models and were divided into 4 groups: intact vertebrae served as group A; pedicle screw fixation of T15, L1, L3, and L4 was given in group B; after total resection of L2, it was reconstructed by open shape memory alloy artificial vertebral body combined with pedicle screw fixation of T15, L1, L3, and L4 in group C; and after total resection of L2, it was reconstructed by titanium cage vertebral body combined with pedicle screw fixation of T15, L1, L3, and L4 in group D. The three-dimensional ROM of flexion, extension, left/right lateral bending, and left/right rotation in T15-L1, L1-3, and L3,4 segments were detected in turn by the spinal three-dimensional test machine MTS-858 (load 0-8 N•m). Results Compared with group A, groups B, C, and D had good stabil ity in flexion, extension, left/right lateral bending, and left/right rotation, showing significant differences (P lt; 0.05). There was no significant difference in the degree of each motion between group B and group C (P gt; 0.05). Group C had less degree of motion in T15-L1 and L3,4 segments than group D, showing significant differences (P lt; 0.05), but there was no significant difference in L1-3 segment (P gt; 0.05). Conclusion The open shape memory alloy artificial vertebral body has a reasonable structure and good biomechanical stabil ity, it can be used to stabil ize the spinal segment with pedicle screw fixation.

    Release date:2016-09-01 09:03 Export PDF Favorites Scan
  • LONG-SEGMENTAL TRACHEA REPLACEMENT USING NICKEL-TITANIUM ALLOY STENT WRAPPED WITH AUTOLOGOUS PERICARDIUM

    ObjectiveTo perfect the surgical process that trachea could be reconstructed by nickel-titanium (Ni-Ti) alloy stent wrapped with autologous pericardium, and to evaluate the effectiveness and observe the complications. MethodsIn the experiment, twelve healthy Bama suckling pigs with weight of 18-25 kg were selected. The pericardium was harvested to cover the Ni-Ti alloy stent. The compound artificial trachea was used to reconstruct long-segmental (6 cm) trachea defect. The effectiveness, complications, the properties, and growth rate of the new mucosa of the artificial trachea lumen were observed. ResultsOf 12 pigs, 2 died soon because of hemorrhage and infection, respectively; 7 died at 2-4 months after operation because of hyperplasia at the middle section and blockage of phlegm plug; 3 survived after 42 weeks postoperatively, but accompanied with dyspnea symptom. At 1, 2, 3, 4, and 5 months after operation, the average crawl length of the new trachea mucosa was 1, 3, 5, 7, and 10 mm, respectively; the occurrence rates of anastomotic stenosis were 0 (0/10), 0 (0/9), 0 (0/4), 33.3% (1/3), and 33.3% (1/3) respectively; and the occurrence rates of scar hyperplasia in the middle of lumen were 20% (2/10), 66.7% (6/9), 75.0% (3/4), 66.7% (2/3), and 100% (3/3), respectively. At 7 months postoperatively, the bronchoscopy examination showed that the scar in central part of artificial trachea had the trends of stagnation, softening, and narrowing, and respiratory symptom had the trend of slight ease. Hyperplasia tissue could be found in central part of artificial trachea by autopsy and was verified to be fiber cells and necrotic tissue by pathology examination. ConclusionNi-Ti alloy stent with autologous pericardium can insure that the reconstructed tracheal lumen is unobstructed, and support the trachea epithelium regeneration; the main factors of the death of the experimental animals are the lumen hyperplasia of the artificial trachea and the blockage of the secondary phlegm plug.

    Release date: Export PDF Favorites Scan
  • Biomechanical study of nickel-titanium three-dimensional memory alloy mesh and autologous bone in treatment of canine tibial plateau collapse fracture

    ObjectiveTo evaluate the biomechanical effect of a nickel-titanium (Ni-Ti) three-dimensional memory alloy mesh in treating a canine tibial plateau collapse fracture model and to lay a foundation for further experiments in vivo.MethodsSixteen tibial plateau specimens of 8 adult Beagle dogs were harvested. Twelve specimens were taken to prepare canine tibial plateau collapse fracture models (Schatzker type Ⅲ) and randomly divided into groups A, B, and C, with 4 specimens in each group. Four normal tibia specimens were used as blank control group (group D). In groups A and B, the bone defects were repaired with Ni-Ti three-dimensional shape memory alloy mesh combined with autologous bone and simple autologous bone respectively, and fixed with the lateral plate and screw. In group C, the bone defect was directly fixed with the lateral plate and screw. By using a biomechanical tester, a progressive load (0-1 700 N) was loaded vertically above the femoral condyle. The maximum failure load was recorded and the stiffness was calculated according to the load-displacement curve.ResultsThe maximum failure loads in groups A, B, C, and D were (1 624.72±7.02), (1 506.57±3.37), (1 102.00±1.83), and (1 767.64±24.56) N, respectively; and the stiffnesses were (129.72±20.83), (96.54±27.05), (74.96±17.70), and (169.01±35.62) N/mm, respectively. The maximum failure load and stiffness in group A were significantly higher than those in groups B and C, but which were significantly lower than those in group D (P<0.05).ConclusionNi-Ti three-dimensional memory alloy mesh combined with autologous bone can repair the Schatzker type Ⅲ tibial plateau collapse fracture, which has better biomechanical properties than simple autologous bone grafting.

    Release date:2018-05-30 04:28 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content