Objective To determine the efficacy and prognosis of noninvasive positive pressure ventilation (NPPV) in exacerbations of chronic obstructive pulmonary disease (COPD). Methods Trials were located through electronic searches of MEDLINE, EMBASE, Springer, and Foreign Journals Integration System (from the start date to March 2008). We also checked the bibliographies of retrieved articles. Statistical analysis was performed with The Cochrane Collaboration’s software RevMan 4.2.10. Results A total of 19 trials involving 1 236 patients were included. Results showed that: (1) NPPV vs. conventional therapy: NPPV was superior to conventional therapy in terms of intubation rate (RR 0.36, 95%CI 0.27 to 0.49), failure rate (RR 0.62, 95%CI 0.43 to 0.90), and mortality (RR 0.49, 95%CI 0.34 to 0.69). The length of hospital stay was shorter in the NPPV group compared with the conventional group (WMD – 3.83, 95%CI – 5.78 to – 1.89), but the length of ICU stay was similar. The changes of PaO2, PaCO2, and pH were much more obvious in the NPPV group compared with the conventional group. The change of respiratory rate was more significant in the NPPV group compared with the conventional group (WMD – 3.75, 95%CI – 5.48 to – 2.03). At discharge and follow-up, there were no significant differences in FEV1, pH, PaCO2, PaO2, and vital capacity between the two groups. (2) NPPV vs. invasive ventilation: the mortality was similar between the two groups. The incidence of complications was lower in the NPPV group compared with the invasive group (RR 0.38, 95%CI 0.20 to 0.73). The length of ICU stay, duration of mechanical ventilation, and weaning time were shorter in the NPPV group than those of the invasive group. At discharge and follow-up, clinical conditions were similar between the two groups. Conclusion The limited current evidence showed that NPPV was superior to conventional therapy in improving intubation rate, mortality, short term of blood-gas change, the change of respiratory rate; and superior to invasive ventilation in the length of hospital stay and the incidence of complication. There were no difference among them in discharge and follow-up.
Objective To study the effect of noninvasive positive pressure ventilation (NPPV) in chronic obstructive pulmonary disease (COPD) patients with hypercapnic coma secondary to respiratory failure.Methods COPD patients with or without coma secondary to respiratory failure were both treated by bi-level positive airway pressure (BiPAP) ventilation on base of routine therapy.There were 32 cases in coma group and 42 cases in non-coma group.Such parameters as arterial blood gas (ABG),Glasgow coma scale (GCS),time of NPPV therapy,achievement ratio,and adverse effects were investigated.Results 30 patients in the coma group were improved after NPPV treatment (26 cases recovered consciousness treated by BiPAP in 2 hours,3 cases recovered between 3~8 hours,1 case recovered after 24 hours).The parameters of ABG,the tidal volume and the minute ventilation volume were improved after BiPAP.The time of effective therapy was (9±4) days in the coma group and (7±3) days in the non-coma group with no significant difference (Pgt;0.05).The achievement ratio was similar in two groups (93.75% vs 97.62%,Pgt;0.05).But the incidence of gastrointestinal tympanites reached to a higher level in the coma group (80.5%) than the non-coma group (10.6%).Conclusion COPD patients with hypercapnic coma secondary to respiratory failure isn’t the absolute contraindication of NPPV treatment.
Objective To compare the effects of oxygen therapy and local pressurization in alleviating plateau hypoxia at high altitude. Methods Forty-five healthy male soldiers were investigated at an altitude of 3992 meters. The subjects were randomly divided into three groups, ie. an oxygen inhalation group, a single-soldier oxygen increasing respirator ( SOIR) group and a BiPAP group. The oxygen inhalation group was treated with oxygen inhalation via nasal catheter at 2 L/ min. SOIR was used to assist breath in the SOIR group. The BiPAP group were treated with bi-level positive airway pressure ventilation, with IPAP of 10 cm H2O and EPAP of 4 cmH2 O. PaO2, PaCO2, SpO2 and heart rate were measured before and 30 minutes after the treatment. Results There were continuous increase of PaO2 from ( 53. 30 ±4. 88) mm Hg to( 58. 58 ±5. 05) mm Hg and ( 54. 43 ±3. 01) mm Hg to ( 91. 36 ±10. 99) mm Hg after BiPAP ventilation and oxygen inhalation, respectively ( both P lt; 0. 01) . However, the PaO2 of the SOIR group was decreased from( 56. 00 ±5. 75) mm Hg to ( 50. 82 ±5. 40) mm Hg( P lt; 0. 05 ) . In the other hand, the PaCO2 was increased from ( 30. 41 ±1. 51) mmHg to ( 32. 56 ±2. 98) mm Hg in the oxygen inhalation group ( P lt; 0. 05) , declined from( 28. 74 ±2. 91) mm Hg to ( 25. 82 ±4. 35) mm Hg in the BiPAP group( P lt;0. 05) ,and didn’t change significantly from( 28. 65 ±2. 78) mm Hg to ( 29. 75 ±3. 89) mmHg in the SOIR group ( P gt;0. 05) . Conclusions Both BiPAP ventilation and oxygen inhalation can alleviate plateau hypoxia by improving PaO2 at 3992 meter altitude while SOIR has no significant effect.
Objective To investigate the effectiveness of noninvasive positive pressure ventilation( NPPV) in acute exacerbation of chronic obstructive pulmonary disease ( AECOPD) complicated with severe type Ⅱ respiratory failure.Methods 37 patients who were admitted fromJanuary 2008 to June 2009 due to AECOPD complicated with severe type Ⅱ respiratory failure and had received NPPV therapy were enrolled as a NPPV group. Another similar 42 cases who had not received NPPV therapy served as control. All subjects received standard medication therapy according to the guideline. Arterial blood gases before and after treatment, the duration of hospitalization and intubation rate were observed. Results The arterial pH, PaO2 ,and PaCO2 improved significantly after treatment as compared with baseline in both groups ( P lt; 0. 05) .Compared with the control group, the average duration of hospitalization was significantly shorter ( 10 ±5 vs.19 ±4 days, P lt;0. 05) and the intubation rate was significantly lower ( 2. 7% vs. 16. 7% , P lt;0. 05) in the NPPV group. Conclusion The use of NPPV in AECOPD patients complicated with severe type Ⅱ respiratory failure is effective in improving arterial blood gases, reducing the duration of hospitalization and intubation rate.
Objective To investigate the effects of noninvasive ventilation for the treatment of acute respiratory failure secondary to severe acute respiratory syndrome ( SARS) . Methods 127 patients with complete information were collected from the database of SARS in Guangdong province, who were all consistent with the ALI/ARDS diagnostic criteria. The patients were divided into three groups depending on ventilation status, ie. a no-ventilation group, a noninvasive ventilation group, and a mechanical ventilation group. The outcome of ventilation treatmentwas followed up.Multi-factor regression analysis was conducted to analyze the relations of ventilation treatment with ARDS and mortality, and factors associated with success of noninvasive ventilation. Results As soon as the patients met the diagnostic criteria of ALI/ARDS, the patients in the noninvasive ventilation group were in more serious condition and had a higher proportion of ARDS compared with the no-ventilation group ( P lt;0. 01) . The patients in the mechanical ventilation group had a higher mortality rate ( P lt;0.01) . 6 and 7 patients in the no-ventilation group had noninvasive ventilation and invasive ventilation thereafter, respectively. 15 patients in the noninvasive group switched to invasive ventilation. Compared with the patients without ventilation ( n =45) , the patients receiving noninvasive ventilation ( n = 61) were in more serious condition and at higher risk of developing ARDS ( P lt;0. 01) , but the mortality was not different between them ( P gt; 0. 05) . The patients who continued to receive noninvasive ventilation ( n = 40) were in more serious condition, and at higher risk of developing ARDS compared with the patients without ventilation ( n = 45) ( P lt; 0. 01) . 15 patients in the noninvasive group who switched to invasive ventilation were older than those patients continuing noninvasive ventilation.Conclusions For SARS patients fulfilling the ALI/ARDS criteria, the patients underwent noninvasive ventilation are more severe, run a higher probability of developing ARDS from ALI. But earlier initiation of noninvasive ventilation has no impact on mortality. The patients who tolerate noninvasive ventilation can avoid intubation, especially for young patients. However, the time and indication of shifting from noninvasive ventilation to invasive ventilation should be emphasized.
Objective To investigate the effects of different inspiratory rise time during noninvasive positive pressure ventilation ( NPPV) on work of breathing in patients with acute exacerbation of chronic obstructive pulmonary disease ( COPD) . Methods Eleven patients with acute exacerbation of COPD received different inspiratory rise time ( 0. 1sec, 0. 3sec, 0. 5sec) during NPPV. The changes of inspiratory muscle effort and breathing pattern of the patients were observed. Results The average respiratory rate,minute ventilation, and tidal volume were higher during NPPV compared with spontaneous breathing. But the changes of average minute ventilation and tidal volume were not significant ( P gt; 0. 05) . The pressure time product ( PTP) , transdiaphragmatic pressure ( Pdi) , and work of breathing of inspiratory muscle reduced significantly during different inspiratory rise time as compared with spontaneous breathing ( P lt;0. 01) . PTP,Pdi, and work of breathing reduced 59. 2% , 62. 7% , and 49% respectively when inspiratory rise time was 0. 1sec. They reduced more significantly during inspiratory rise time of 0. 1sec. Conclusions The present study confirms NPPV can unload inspiratory muscles in patients with acute exacerbation of COPD. It is more effective to reduce inspiratory load when inspiratory rise time is set at 0. 1sec while the patients feel most comfortable.
Objective To investigate the influence of pulmonary infection on noninvasive ventilation ( NIV) therapy in hypercapnic acute respiratory failure ( ARF) due to acute exacerbation of chronic obstructive pulmonary disease ( AECOPD) , and evaluate the predictive value of simplified version of clinical pulmonary infection score ( CPIS) for the efficacy of NIV therapy in ARF patients with AECOPD. Methods Eighty-four patients with ARF due to AECOPD were treated by NIV, and were divided into a successful group and an unsuccessful group by the therapeutic effect of NIV. The CPIS and simplified version of CPIS between two groups was compared. The predictive value of simplified version of CPIS for the efficacy of NIV wasevaluated using ROC curve analysis. Results The CPIS and the simplified version of CPIS of the successful treatment group ( 4. 0 ±2. 8, 3. 2 ±2. 4) were lower than those of the unsuccessful group ( 8. 0 ±2. 1, 7. 2 ±1. 8) significantly ( P =0. 006, 0. 007) . The area under ROC curve ( AUC) of CPIS and simplified version of CPIS were 0. 884 and 0. 914 respectively, the cut oint of CPIS and simplified version of CPIS were 6 ( sensitivity of 78. 0% , specificity of 91. 2% ) and 5 ( sensitivity of 80. 0% , specificity of 91. 2% ) respectively. Conclusions The level of pulmonary infection is an important influencing factor on the therapeutic effect of NIV in patients with ARF due to AECOPD. Simplified version of CPIS is a helpful predictor for the effect of NIV on ARF of AECOPD.
Objective To evaluate the efficiency and associated factors of noninvasive positive pressure ventilation( NPPV) in the treatment of acute lung injury( ALI) and acute respiratory distress syndrome( ARDS) .Methods Twenty-eight patients who fulfilled the criteria for ALI/ARDS were enrolled in the study. The patients were randomized to receive either noninvasive positive pressure ventilation( NPPV group) or oxygen therapy through a Venturi mask( control group) . All patients were closely observed and evaluated during observation period in order to determine if the patients meet the preset intubation criteria and the associated risk factors. Results The success rate in avoiding intubation in the NPPV group was 66. 7%( 10/15) , which was significantly lower than that in the control group ( 33. 3% vs. 86. 4% , P = 0. 009) . However, there was no significant difference in the mortality between two groups( 7. 7% vs.27. 3% , P =0. 300) . The incidence rates of pulmonary bacteria infection and multiple organ damage were significantly lower in the NPPV success subgroup as compared with the NPPV failure group( 2 /10 vs. 4/5, P =0. 01;1 /10 vs. 3/5, P = 0. 03) . Correlation analysis showed that failure of NPPV was significantly associated with pulmonary bacterial infection and multiple organ damage( r=0. 58, P lt;0. 05; r =0. 53, P lt;0. 05) . Logistic stepwise regression analysis showed that pulmonary bacterial infection was an independent risk factor associated with failure of NPPV( r2 =0. 33, P =0. 024) . In the success subgroup, respiratory rate significantly decreased( 29 ±4 breaths /min vs. 33 ±5 breaths /min, P lt; 0. 05) and PaO2 /FiO2 significantly increased ( 191 ±63 mmHg vs. 147 ±55 mmHg, P lt;0. 05) at the time of 24 hours after NPPV treatment as compared with baseline. There were no significant change after NPPV treatment in heart rate, APACHEⅡ score, pH and PaCO2 ( all P gt;0. 05) . On the other hand in the failure subgroup, after 24 hours NPPV treatment, respiratory rate significantly increased( 40 ±3 breaths /min vs. 33 ±3 breaths /min, P lt;0. 05) and PaO2 /FiO2 showed a tendency to decline( 98 ±16 mmHg vs. 123 ±34 mmHg, P gt; 0. 05) . Conclusions In selected patients, NPPV is an effective and safe intervention for ALI/ARDS with improvement of pulmonary oxygenation and decrease of intubation rate. The results of current study support the use of NPPV in ALI/ARDS as the firstline choice of early intervention with mechanical ventilation.
Objective To investigate the feasibility of dexmedetomidine hydrochloride in sedation practices during NPPV for patients with acute exacerbation of COPD ( AECOPD) and respiratory failure. Methods 50 patients with AECOPD and respiratory failure, admitted in ICU between January 2011 and April 2012, were divide into an observation group and a control group. All patients received conventional treatment and noninvasive positive pressure ventilation ( NPPV) . Meanwhile in the observation group, dexmedetomidine hydrochloride ( 1 μg/kg) was intravenously injected within 10 minutes, then maintained using a micropump by 0.1 ~0. 6 μg·kg- 1 ·h- 1 to maintaining Ramsay Sedation Scale ( RSS) score ranged from 2 to 4. The patients’compliance to NPPV treatment ( conversion rate to invasive ventilation) and ICU stay were compared between two groups. Heart rate,mean arterial pressure, respiratory rate, and arterial blood gas ( pH, PaO2 , PaCO2 ) before and 24 hours after treatment were also compared. Results After 24 hours treatment, heart rate, mean arterial pressure, respiratory rate, and arterial blood gas were all improved in two groups, while the improvements were more remarkable in the observation group. The conversion rate to invasive ventilation ( 4% vs. 16% ) and ICUstay [ ( 5.47 ±3.19) d vs. ( 8.78 ±3.45) d] were lower in the observation group than those in the control group. ( P lt;0.05) . Conclusion Dexmedetomidine hydrochloride may serve as a safe and effective sedative drug during NPPV in patients with AECOPD and respiratory failure.
Objective To investigate the physiological effects of different oxygen injection site on ventilatory status and oxygenation during noninvasive positive pressure ventilation ( NPPV) with portable noninvasive ventilators. Methods A prospective crossover randomized study was performed. Oxygen injection site was randomized into the outlet of the ventilator, the connection site between mask and circuit, and the mask under the condition of leak port immobilized in the mask. Oxygen flow was retained in the baseline level at the initial 5 to 10 minutes, and adjusted to obtain arterial oxygen saturation measured by pulse oximetry ( SpO2 ) ranging from 90% to 95% after SpO2 remains stable. SpO2 at the initial 5 to 10 minutes, oxygen flow, ventilatory status, oxygenation, hemodynamics and dyspnea indexes at0. 5 hour, 1 hour, and 2 hours of NPPV were compared between different oxygen injection sites. Results 10 patients were recruited into the study. Under the condition of the same oxygen flow, SpO2 with oxygen injection site in the outlet of the ventilator was significantly higher than that with oxygen injection site in the connection site between mask and circuit [ ( 98.9 ±0.9) % vs. ( 96.9 ±1.1) % , P =0. 003] , whereas SpO2 with oxygen injection site in the connection site between mask and circuit was significantly higher than that with oxygen injection site in the mask [ ( 96.9 ±1.1) % vs. ( 94.1 ±1.6) %, P = 0.000] . Oxygen flow with oxygen injection site in the mask was statistically higher than that with oxygen injection site at other sites ( P lt; 0.05) . Arterial oxygen tension/ oxygen flow with oxygen injection site in the outlet of the ventilator was significantly higher than that with oxygen injection site in the connection site between mask and circuit ( 67.9 ±31.1 vs. 37.0 ±15.0, P =0.007) , and than that with oxygen injection site in the mask ( 67.9 ± 31.1 vs. 25.0 ±9.1, P = 0.000) . pH, arterial carbon dioxide tension, hemodynamics and dyspnea indexes were not significantly different between different oxygen injection sites ( P gt; 0.05) .Conclusions When portable noninvasive ventilator was applied during NPPV, oxygen injection site significantly affects improvement of oxygenation, and shows a trend for affecting ventilatory status and work of breathing. When the leak port was immobilized in the mask, the nearer oxygen injection site approaches the outlet of the ventilator, the more easily oxygenation is improved and the lower oxygen flow is demanded.