ObjectiveTo investigate the role of PI3K/AKT/mTOR signaling pathway in skeletal muscle atrophy in rats with chronic obstructive pulmonary diseases(COPD). MethodsPassive cigarette smoking was used to establish COPD model.The protein expression of PI3K, total mTOR, phosphorylated-mTOR, total GSK-3β, phosphorylated-GSK-3β, total 4E-BP1, phosphorylated-4E-BP1, total p70S6K1 and phosphorylated-p70S6K1 in extensor digitorum longus of rats were measured by Western blot. ResultsThe protein expression of PI3K was not significantly different between two groups(P > 0.05).Compared with the control group, the protein expression of total mTOR, phosphorylated-mTOR, total GSK-3β, and phosphorylated-GSK-3βincreased significantly in the COPD group(P < 0.05).The protein expression of total 4E-BP1 and total p70S6K1 were not significantly different between two groups(P > 0.05).While the protein expression of phosphorylated-4E-BP1 and phosphorylated-p70S6K1 significantly increased in the COPD group(P < 0.05). ConclusionThe protein expressions of PI3K/AKT/mTOR signaling pathway in extensor digitorum longus increased significantly in COPD rats, suggesting that the activity of PI3K/AKT/mTOR signaling pathway increased, which may be one of the compensatory mechanism of skeletal muscle atrophy in COPD.
ObjectiveTo study the effect of Tangeretin on non-small cell lung cancer (NSCLC) and the tumor stemness, and to find the molecular mechanism of its effect. MethodsWe used cell counting and cell cloning experiments to study the effect of Tangeretin on the proliferation of NSCLC cells in vitro. The effect of Tangeretin on the invasion of NSCLC cells was detected by transwell assay. We detected the effect of Tangeretin on the proliferation of NSCLC cells in vivo by nude mouse tumor-bearing experiment. The effect of Tangeretin on tumor stemness of NSCLC cells was detected by self-renew assay, and CD133 and Nanog protein expressions. The expressions of PI3K/AKT/mTOR signaling pathway-related proteins were detected by Western blotting (WB). ResultsTangeretin had a good inhibitory effect on the proliferation of NSCLC cells in vivo and in vitro. Cell counting experiment, clonal formation experiment and nude mouse tumor-bearing experiment showed that Tangeretin could inhibit the proliferation activity, clonal formation ability, and tumor size of NSCLC cells in vivo. Self-renew experiments showed that Tangeretin could inhibit the self-renew ability of NSCLC cells. WB experiments showed that Tangeretin inhibited the expressions of tumor stemness markers CD133 and Nanog in NSCLC cells. Tangeretin could inhibit the activation of PI3K/AKT/mTOR signaling pathway-related proteins in NSCLC cells, and the activation of PI3K/AKT/mTOR signaling pathway could partially remit the inhibitory effect of Tangeretin on tumor stemness of NSCLC cells. ConclusionTangeretin can inhibit the tumor stemness of NSCLC cells, which may be related to the regulation of PI3K/AKT/mTOR signaling pathway.