To study how to repair the cartilage defect according to the principles of tissue engineering with acellular cartilage matrix as scaffold material. Methods The ear cartilage was obtained from a New Zealand white rabbit(weighing 2.4 kg )and then treated by a modified Courtman’s four-step method to produce the acellular cartilage matrix. Eighteen New Zealand white rabbits (aged 6 months, weighing 2.4-2.6 kg) with no sex l imit were divided into three groups. Forevery rabbit, two pieces of ear cartilage measured 1 cm × 1 cm were excised in each ear. Defects were repaired as follows: group A with the combined graft of acellular cartilage matrix and perichondium, group B with acellular cartilage matrix and group C with perichondium. Three animals in each group were killed 4 and 12 weeks postoperatively, respectively. Tissue samples obtained were analyzed with gross observation, hematoxyl in-eosin stain, Safranine O-alcian blue stain and type II collagen messenger RNA in situ hybridization respectively. Results In gross observation, the repaired sites in groups A and B were not change meaningfully in their shape 4 weeks postoperatively; but they felt a bit of thicker and harder 12 weeks postoperatively. In group C two repaired sites formed scabs at 2 weeks and perforated at 5 weeks. In histological observation, there was a sl ight inflammatory reaction surrounding the acellular cartilage matrix 4 weeks after it was implanted in groups A and B. The inflammatory cells were mainly lymphocytes. The perichondrium graft in group C was collapsed in the defects in HE stain. The defect sites were negative for Safranine O-alcian blue stain and type II collagen mRNA in situ hybridization in all groups. At 12 weeks cells were found in the acellular matrix which arranged in irregular manner in group A in HE stain and was positive for Safranine O-alcian blue stain and type II collagen mRNA in site hybridization. In groups B and C, no new cell was found in HE stain and the repaired sites were negative for Safranine O-alcian blue stain and type II collagen mRNA in situ hybridization. Conclusion Acellular
In order to observe the histological changes of the autogenous perichondrium graft from rib in the repair of injured articular cartilage of the condylar process of mandible, 50 rabbits were used, in which 15 were served as control. The articular cartilage with its subchondral bone were resected and an autogenous graft of costal perichondrium was sutured onto the raw surface of the condylar process, and in the controls, only the articular portion of the condylar process was resected without the application of autogenous costal perichondrium graft. The morphological changes of the newly formed cartilage during the process of its development were investigated by hiostological and autoradiog aphic techniques. The result revealed that 10 days after operation, the graft had increased in thickness and was richly populated form the proliferation of mesenchyme-like cells. Twenty to thirty days later, the chondrocytes were matured and the newly formed cartilage had covered the bony surface of mandibular condyle. At 60 days, the newly formed cartilagenous joint surface became glossy, and the morphology and arrangement of cells tended to be regular simulating the morphology of normal articular cartilage. From the experiment, it could be concluded that (1) The autogenous perichondrium graft placed on the condylar surface of mandible could form new articular cartilage which was similar in tissue morphology to the normal condylar cartilage. (2) The process of development of newly formed cartilage was similar to that of the normal cartilage. (3) The motion and loading on the joint could promote the formation of new cartilage and undergo biological reformation, gradually resulting in normal joint morphology. On this basis, the clinical application of autogenous perichondrium graft to repair injured cartilage of the condylar process of the mandible was feasible.