west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Polypoid choroidal vasculopathy" 2 results
  • Analysis of the efficacy of subretinal injection and intravitreal injection of conbercept in the treatment of polypoidal choroidal vasculopathy

    ObjectiveTo observe the clinical effect of subretinal injection and intravitreal injection of conbercept in the treatment of polypoid choroidal vasculopathy (PCV). MethodsA prospective, randomized double-blind controlled study. From June 2022 to January 2023, 35 patients of 35 eyes with PCV diagnosed at Affiliated Eye Hospital of Nanchang University were included in the study. All patients were first-time recipients of treatment. Best corrected visual acuity (BCVA), optical coherence tomography (OCT), and indocyanine green angiography (ICGA) were performed in all affected eyes. BCVA was performed using an international standard visual acuity chart and converted to logarithmic minimum resolved angle (logMAR) visual acuity for statistical purposes. Enhanced depth imaging with OCT instrument was used to measure the macular retinal thickness (MRT), subfoveal choroidal thickness (SFCT), and pigment epithelium detachment (PED) height. Randomized numerical table method was used to divide the patients into subretinal injection group (group A) and vitreous cavity injection group (Group B), 18 cases with 18 eyes and 17 cases with 17 eyes, respectively. Comparison of age (t=0.090), disease duration (t=−0.370), logMAR BCVA (t=−0.190), MRT (t=0.860), SFCT (t=0.247), and PED height (t=−0.520) between the two groups showed no statistically significant difference (P>0.05). The eyes of group A were given one subretinal injection of 10 mg/ml conbercept 0.05 ml (containing conbercept 0.5 mg), and subsequently administered on demand (PRN); eyes in group B were given intravitreal injection of 10 mg/ml conbercept 0.05 ml (containing conbercept 0.5 mg). The treatment regimen was 3+PRN. Lesions were categorized into active and quiescent according to the results of post-treatment OCT and BCVA. Active lesions were treated with intravitreal injection of conbercept at the same dose as before; stationary lesions were followed up for observation. BCVA and OCT were performed at 1, 2, 3, 6 and 9 months after treatment; ICGA was performed at 3, 6 and 9 months. BCVA, MRT, SFCT, and PED height changes before and after treatment were compared and observed in the affected eyes of the two groups. Independent sample t-test was used to compare between the two groups. ResultsWith the prolongation of time after treatment, the BCVA of the affected eyes in groups A and B gradually increased, and the MRT, SFCT, and PED height gradually decreased. Compared with group B, at 2, 3, 6, and 9 months after treatment, the BCVA of group A was significantly improved, and the difference was statistically significant (t=−2.215, −2.820, −2.559, −4.051; P<0.05); at 1, 2, 3, 6, and 9 months after treatment, the MRT of the affected eyes in group A (t=−2.439, −3.091, −3.099, −3.665, −5.494), SFCT (t=−3.370, −3.058, −3.268, −4.220, −4.121), and PED height (t=−3.460, −4.678, −4.956, −5.368, −6.396) were significantly reduced, and the differences were statistically significant (P<0.05). No complications such as intraocular inflammation, high intraocular pressure, or vitreous hemorrhage occurred in any of the affected eyes during or after treatment. ConclusionCompared with the intravitreal injection of conbercept, the subretinal injection of conbercept can more effectively reduce the height of MRT, SFCT, PED height, and improve the visual acuity of the affected eyes with PCV.

    Release date: Export PDF Favorites Scan
  • Therapeutic effect of subretinal injection of alteplase plus Conbercept for acute submacular hemorrhage secondary to polypoid choroidal vasculopathy

    ObjectiveTo observe the efficacy and safety of vitrectomy combined with subretinal injection of alteplase (tPA) and intravitreal injection of Conbercept in the treatment of large area submacular hemorrhage (SMH) secondary to polypoidal choroidal vasculopathy (PCV). MethodsA retrospective clinical study. From January to September 2021, 32 eyes of 32 patients with massive SMH secondary to PCV diagnosed in the Affiliated Eye Hospital of Nanchang University were included in the study. Large SMH was defined as hemorrhage diameter ≥4 optic disc diameter (DD). There were 32 patients (32 eyes), 20 males and 12 females. The mean age was (72.36±8.62) years. All patients had unilateral disease.The duration from onset of symptoms to treatment was (7.21±3.36) days. All patients underwent best corrected visual acuity (BCVA) and optical coherence tomography (OCT) examination. BCVA examination was performed using the international standard visual acuity chart, which was converted to the logarithm of the minimum angle of resolution (logMAR) visual acuity during statistics. The central macular thickness (CMT) was measured by spectral domain-OCT. The average size of SMH was (6.82±1.53) DD. The logMAR BCVA 1.73±0.44; CMT was (727.96±236.40) μm. All patients were treated with 23G pars plana vitrectomy combined with subretinal injection of tPA and intravitreal injection of Conbercept. At 1, 3, 6 and 12 months after treatment, the same equipment and methods were used for relevant examinations before treatment. The changes of BCVA and CMT, the clearance rate of macular hemorrhage, and the complications during and after surgery were observed. BCVA and CMT before and after treatment were compared by repeated measures analysis of variance. ResultsCompared with before treatment, BCVA gradually increased at 1, 3, 6 and 12 months after treatment, and the differences were statistically significant (F=77.402, P<0.001). There was no significant difference in BCVA between any two groups at different time points after treatment (P>0.05). Correlation analysis showed that BCVA at 12 months after treatment was negatively correlated with the course of disease (r=-0.053, P=0.774). One week after treatment, macular hemorrhage was completely cleared in 30 eyes (93.75%, 30/32). The CMT was (458.56±246.21), (356.18±261.46), (345.82±212.38) and (334.64±165.54) μm at 1, 3, 6 and 12 months after treatment, respectively. Compared with before treatment, CMT decreased gradually after treatment, and the difference was statistically significant (F=112.480, P<0.001). There were statistically significant differences in different follow-up time before and after treatment (P<0.001). The number of treatments combined with Conbercept during and after surgery was (4.2±1.8) times. At the last follow-up, there was no recurrence of SMH, retinal interlamellar effusion and other complications. Conclusion Subretinal injection of tPA combined with intravitreal injection of Conbercept is safe and effective in the treatment of large SMH secondary to PCV, and it can significantly improve the visual acuity of patients.

    Release date:2024-03-06 03:23 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content