west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Power spectral density" 2 results
  • Automatic sleep staging based on power spectral density and random forest

    The method of using deep learning technology to realize automatic sleep staging needs a lot of data support, and its computational complexity is also high. In this paper, an automatic sleep staging method based on power spectral density (PSD) and random forest is proposed. Firstly, the PSDs of six characteristic waves (K complex wave, δ wave, θ wave, α wave, spindle wave, β wave) in electroencephalogram (EEG) signals were extracted as the classification features, and then five sleep states (W, N1, N2, N3, REM) were automatically classified by random forest classifier. The whole night sleep EEG data of healthy subjects in the Sleep-EDF database were used as experimental data. The effects of using different EEG signals (Fpz-Cz single channel, Pz-Oz single channel, Fpz-Cz + Pz-Oz dual channel), different classifiers (random forest, adaptive boost, gradient boost, Gaussian naïve Bayes, decision tree, K-nearest neighbor), and different training and test set divisions (2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, single subject) on the classification effect were compared. The experimental results showed that the effect was the best when the input was Pz-Oz single-channel EEG signal and the random forest classifier was used, no matter how the training set and test set were transformed, the classification accuracy was above 90.79%. The overall classification accuracy, macro average F1 value, and Kappa coefficient could reach 91.94%, 73.2% and 0.845 respectively at the highest, which proved that this method was effective and not susceptible to data volume, and had good stability. Compared with the existing research, our method is more accurate and simpler, and is suitable for automation.

    Release date: Export PDF Favorites Scan
  • Heart sound classification algorithm based on time-frequency combination feature and adaptive fuzzy neural network

    Feature extraction methods and classifier selection are two critical steps in heart sound classification. To capture the pathological features of heart sound signals, this paper introduces a feature extraction method that combines mel-frequency cepstral coefficients (MFCC) and power spectral density (PSD). Unlike conventional classifiers, the adaptive neuro-fuzzy inference system (ANFIS) was chosen as the classifier for this study. In terms of experimental design, we compared different PSDs across various time intervals and frequency ranges, selecting the characteristics with the most effective classification outcomes. We compared four statistical properties, including mean PSD, standard deviation PSD, variance PSD, and median PSD. Through experimental comparisons, we found that combining the features of median PSD and MFCC with heart sound systolic period of 100–300 Hz yielded the best results. The accuracy, precision, sensitivity, specificity, and F1 score were determined to be 96.50%, 99.27%, 93.35%, 99.60%, and 96.35%, respectively. These results demonstrate the algorithm’s significant potential for aiding in the diagnosis of congenital heart disease.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content