west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Protein kinase" 13 results
  • The Roles of Protein Kinase C Signal Pathway in the Occurrence and Development of Hepatic Injury in Obstructive Jaundice

    Objective To explore the regulating mechanism of hepatic injury in obstructive jaundice (OJ). Methods①Rat hepatocytes were isolated by in situ collagenase perfusion and primary culture. Hepatocytes were pretreated with various concentrations of protein kinase C (PKC) agonist parsmeae (PMA) and inhibitor chelerythrine for 20 min. After pretreatment, 50 μmol/L glycochenodeoxycholate (GCDC) was added. Cells were next detected by FCM and TUNEL.②Experimental obstructive jaundice was induced by double ligation of the bile duct (BDL), BDL for 3, 7, 14, 21days.We detected apoptotic status in liver with TUNEL and PKC protein in liver with immunohistochemistry method. Results①PMA increased GCDCinduced apoptosis and chelerythrine decreased GCDCinduced apoptosis in a concentrationdependent manner. ②The apoptotic rate of liver was related to time of OJ. Apoptosis index (AI) was the highest in 14day bile duct ligation. The ber PKC expression, the more number of apoptotic cells in OJ.Conclusion PKC takes part in the regulation and the occurrence and progression of hepatic injury in OJ.

    Release date:2016-08-28 05:10 Export PDF Favorites Scan
  • Role of Cyclic Adenosine Monophosphate Signaling Pathway in Myocardial Protection by Diazoxide Preconditioning: Experiment with Isolated Rat Hearts

    Abstract: Objective To study the changes of the cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) expression of isolated rat hearts after diazoxide preconditioning (DPC), and to explore the possible mechanism of cAMP signaling pathway in myocardial protection by DPC. Methods Isolated working heart Langendorff perfusion models of 40 Wistar rats were set up and were divided randomly into four groups. For the ischemia reperfusion injury(I/R) group (n=10), 30 min of equilibrium perfusion was followed by a 60 min reperfusion of KrebsHenseleit (K-H) fluid. The DPC group (n=10) had a 10 min equilibrium perfusion and two cycles of 5 min of 100 μmol/L diazoxide perfusion followed by a 5 min diazoxidefree period before the 30 min ischemia and the 60 min reperfusion of K-H fluid. The blank control group (control group, n=10) and the Dimethyl Sulphoxide(DMSO) group (n=10) were perfused with the same treatment as in the DPC group except that diazoxide was replaced by natriichloridum and DMSO respectively. The activity of creatine kinase (CK) in coronary outflow, the activity of malonyldialdehyde (MDA) and superoxide dismutase (SOD) in myocardium were detected. And the scope of myocardial infarction and the concentrations of myocardial cAMP and PKA were also assessed. Results Compared with the I/R group, the level of MDA for the DPC group decreased significantly (8.28±2.04 nmol/mg vs. 15.52±2.18 nmol/mg, q=11.761,Plt;0.05), the level of SOD increased significantly (621.39±86.23 U/mg vs. 477.48±65.20 U/mg, q=5.598,Plt;0.05). After a 30 min reperfusion, compared with the I/R group, the content of CK decreased significantly (82.55±10.08 U/L vs. 101.64±19.24 U/L, q=5.598, Plt;0.05) and the infarct size reduced significantly (5.63%±9.23% vs.17.58%±5.76%, q=6.176,Plt;0.05) in the DPC group. The cAMP concentration in the DPC group was much higher than that in the I/R group (0.64±0.07 pmol/g vs. 0.34±0.05 pmol/g, q=14.738,Plt;0.05), and PKA concentration was also much higher than that in the I/R group [17.13±1.57 pmol/(L·min·mg) vs. 12.85±2.01 pmol/(L·min·mg), Plt;0.05]. However, there were no significant differences between the I/R group, DMSO group and the control group in the above indexs (Pgt;0.05). Conclusion DPC significantly improves the releasing of cAMP and PKA, decreases oxygen free radicals, and relieves myocardial ischemia reperfusion injury. The cAMP signaling pathway may be involved in triggering the process of myocardial protection mechanisms of DPC.

    Release date:2016-08-30 06:02 Export PDF Favorites Scan
  • The Role of Protein Kinase C in Immature Myocardial Ischemic Preconditioning

    Abstract: Objective To investigate the mechanism of protein kinase C(PKC) in immature myocardial ischemic preconditioning in order to further its clinical applicability. Methods Langendorff perfusion heart models of 24 rabbits were set up and they were randomly divided into 4 groups: ischemic reperfusion group (I/R group), myocardial ischemic preconditioning group (MIP group), chelerythrine group (CLT group) and protein kinase C group (PKC group). The emodynamics, biochemistry and myocardial ultrastructure were observed. Results The heart function recovery and myocardial water content in the MIP and the PKC groups were better than those of the I/R and the CLT groups (Plt;0.01). The adenosine triphosphate (ATP) content, superoxide dismutase activity, mitochondrial Ca2+-ATPase activity and synthesizing ATP activity of mitochondria in the MIP and the PKC groups were significantly higher than those of the I/R and the CLT groups (Plt;0.01). The dehydrogenase and creatine kinase leakage, malondialdehyde content, myocardial cell Ca2+ content and mitochondrial Ca2+ content in the MIP and the PKC groups were significantly lower than those of the I/R and the CLT groups (Plt;0.01). The myocardial ultrastructure injuries in the MIP and the PKC groups were less than that of the I/R and the CLT groups. Conclusion Myocardial ischemic preconditioning plays an important role in protecting immature myocardium, which is probably realized by the activation of PKC.

    Release date:2016-08-30 06:02 Export PDF Favorites Scan
  • Effects of cytokines on the expression of syndecan-1 in cultured human retinal pigment epithelial cells

    Objective To investigate the effects of cytokines on the expression of syndecan-1 in cultured human retinal pigment epithelial (RPE) cells and the signal transduction pathway. Methods Reverse transcription polymerase chain reaction and immunofluorescence staining were used to detect the expression of syndecan-1 mRNA and protein in normal RPE cells. The expression of syndecan-1 in RPE cells stimulated by different cytokines was detected and quantitatively analyzed by image process of immunofluorescence. The stimulation included 7 and 35 ng/ml tumor necrosis factor (TNF)-alpha; for 24 hours, 1 and 6 mu;g/ml lipopolysaccharide (LPS) for 11 hours, 7 ng/ml TNF-alpha; for 0 to 24 hours (once per 2 hours, and 13 times in total), and 30% supernatant of monocyte/macrophage strain (THP-1 cells) for 3, 14 and 43 hours. The effect of 30% supernatant of THP-1 cells was assayed after pretreated by PD098059[the specific inhibitor of extracellular signal regulated kinase(ERK) 1/2]for 2 hours. After exposed to 30% supernatant of THP-1 cells for 3 hours and treated by 0.25% trypsin for 5 minutes, RPE cells attaching was evaluated by methyl thiazolyl tetrazolium assay. Results In normal human RPE cells, expressions of syndecan-1 mRNA and protein were detected, and b syndecan-1 positive yellowish green fluorescence was found in the cell membrane and cytoplasm while light green fluorescence was in the nucleus. As the concentration and stimulated time of TNF-alpha; or LPS increased, the fluorescence intensity decreased(Plt;0.01), and after exposed to 30% supernatant of THP-1 cells, weaker fluorescence intensity was detected (Plt;0.001). Pretreatment with 50 mu;mol/L PD098059 for 2 hours partly inhibited the effect of THP-1 cells supernatant. After exposed to 30% supernatant of THP-1 cells for 3 hours, the number of attached cells decreased compared with the controls(Plt;0.05). Conclusions TNF-alpha; and LPS down-regulate the expression of syndecan-1 in cultured human RPE cells. The supernatant of THP-1 cells down-regulates the expression of syndecan-1 and lessens the cells attaching, which is at least mediated by ERK 1/2 pathway. (Chin J Ocul Fundus Dis, 2006, 22: 113-116)

    Release date:2016-09-02 05:51 Export PDF Favorites Scan
  • Relationship between retinal protein kinase C and endothelin system in early diabetic rats

    Objective To investigate the alteration of protein kinase C (PKC) and endothelin system in early diabetic rats, and the effect of specific PKC inhibitor on the expression of retinal endothelin-1 (ET-1). Methods The rats model with streptozotocin(STZ)-induced diabetes were set up. The expression of retinal PKC was detected by enzyme-linked immunoabsorbent assay (ELISA). The expression of retinal ET-1, ET-3, ET-A and ET-B receptor mRNA was determined by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). The alteration of retinal ET-1 mRNA after intravitreal injection of PKC inhibitor GF109203X in diabetic rats was also observed. Results The activities of membranous PKC were significantly increased in 2-week diabetic rats compared with that in normal rats(t=3.296 , P=0.008), while activities of cytosolic PKC were unchangeable(t=0.138, P=0.894). The expression of retinal ET-1 mRNA was significantly increased(P=0.008), while no change was found in expression of ET-3, ET-A and ET-B mRNA(P=0.918,P=0.889,P=0.500). After intravitreal in jection of 10-5、10-6、10-7 mol/L PKC inhibitor GF109203X in diabetic rats, the expression of retinal ET-1 mRNA was decreased in a dose-dependent manner compared with the control rats. Conclusion Activation of PKC and increased expression of ET-1 could be found in the retina of early diabetic rats, and PKC inhibitor could inhibit the expression of retinal ET-1. (Chin J Ocul Fundus Dis,2004,20:168-171)

    Release date:2016-09-02 05:58 Export PDF Favorites Scan
  • Effect of hypericin on the activity of protein kinase C in cultured human retinal pigment epithelial cells in vitro

    Objective To investigate the effect of hypericin on the activity of protein kinase C (PKC) in cultured human retinal pigment epithelium (RPE) cells in vitro.Methods RPE cells were cultured in standard medium with 10% serum concentrations containing 0.5 to 5.0 μmol/L hypericin with or without preincubation of phorbol 12-myristate 13-acetate (PMA). The activities of cytosolic PKC (c-PKC) and membranous PKC (m-PKC) were assayed by PKC kit. Results The original activities of c-PKC and m-PKC of RPE cells were (35.34±4.10) pmol·min-1·mg-1and (62.52±8.80) pmol·min-1·mg-1.The activity of c-PKC in RPE cells with PMA preincubation decreased rapidly in 5 minutes, with a subsequent slow decrease after 20 minutes and a decrease to 18% of the activity of c-PKC in RPE cells without PMA preinubation after 60 minutes. While the activity of m-PKC in RPE cells with PMA preincubation increased gradually after 5 minutes and reduced after reached the peak at 40 minutes, and then returned to baseline after 60 minutes, eventually decreased below 30% of the control group. When RPE cells were cultured with PMA for 48 hours, the activities of c-PKC and m-PKC were hardly detectable, while RPE cells were cultured with both PMA and hypericin, hypericin could counteract most of down-regulation by PMA. Conclusion Hypericin may inhibit the translocation of PKC in RPE cells,change the activity of PKC, promote the apoptosis of RPE cells likely,and then prevent proliferative vitreoretinopathy. (Chin J Ocul Fundus Dis,2003,19:55-58)

    Release date:2016-09-02 06:00 Export PDF Favorites Scan
  • PROTEIN KINASE C IN RAT RETINA DURING PHOTOCHEMICAL DAMAGE

    PURPOSE:To evaluate the activitv of protein kinase C(PKC) in response to retinal photochemical insult in rat. Furthermore, to investigate the effect of dexamethasone(DXM ) on PKC activity. METHODS :The experiments were performed on 48 SI') rats whieh were separated into two groups,control and treated groups,and the latter received daily intraperitoneal injections of DXM (1 mg/kg)for 5 consecutive days,starting 3 days before light exposure. The animals were continually exposed to green fluorescent light (510nm~560nm) with an illuminance level of (1 900plusmn;106.9)lx for 24 hrs.The retinal enzyme activity of PKC was tested at 6 hrs,1 day,3 days,7 days,and 14 days after light exposure respectively. RESULTS:In animal models,PKC activity showed a transient increase in both groups at 6 hrs after light exposure and then decrease persistently there alter. The activity of PKC was unresponsive to DXM intervention. CONCLUSIONS :These results suggested that the persistent lower PKC activity might result in disturbance of retinal function in rat retinal photochemical injury. (Chin J Ocul Fundus Dis,1997,13: 78-80)

    Release date:2016-09-02 06:12 Export PDF Favorites Scan
  • LOCALIZATION OF PROTEIN KINASE C IN RABBIT RETINA

    PURPOSE:To verify existance of a-,~-,and 3'-protein kinase C(PKC)subspecies and their localization in rabbit retina. METHODS: Using an immunohistoehemical technique with mono- elonal antibodies against PKC isozymes- I (a),-I[ (13),and -~[ (Y) to characterize the distribution of PKC in rabbit retina. RESULTS:There is a positive immunostaining for a-,13-,and ~-PKC in rabbit retina. The immunoreactivity of a-PKC was observed mainly in the bipolar cells of inner nuclear layer and the outer segments of photorecptors. The positive immunostaining of 13-PKC could be seen in the ganglion cells,inner plexiform layer,inner nuclear layer,and the outer segments of photoreceptors. A diffuse and weak staining of Y-PKC is recognized in the ganglion cell layer,inner plexifrom layer,inner nuclear layer, and the outer segments of photoreceptors. CONCLUSION:The protein kinase C sub- speeies-a,-~,and-'Y are present in retina which is a part of the central nervous system

    Release date:2016-09-02 06:21 Export PDF Favorites Scan
  • Ghrelin Enhances The Sensitivity of Insulin in L6 Rat Skeletal Muscle Via PI3K/Akt/GSK-3βSignaling Pathway

    ObjectiveTo study the effects of Ghrelin for glucose metabolism and insulin sensitivity of L6 rat myoblasts in palmitic acid induced, and to explore its possible mechanisms. MethodsThe L6 rat myoblasts were cultured until differentiation, then using palmitic acid(0.3 mmol/L) for 16 hours. The experimental group was treated with different doses of Ghrelin(1, 10, and 100 nmol/L) for 8 hours, then the glucose uptake was detected by using glucose oxidase peroxidase method(GOD-POD), the cell membrane glucose transporter 4(GLUT-4) protein staining was observated under confocal microscopy, and the expressions of total protein kinase B(Akt), phosphorylated protein kinase B(pAkt), total glycogen synthase kinase-3β(GSK-3β), and phosphorylated glycogen synthase kinase-3β(pGSK-3β) were detected by using immunoblotting(Western blot). ResultsGhrelin enhanced the glucose uptake of L6 rat myoblasts with insulin resistance, the cell membrane Glut-4 stain was deepen, the expressions of pAkt and pGSK-3βprotein increased, and this effect could be PI3K blocker(LY294002) eliminated. ConclusionGhrelin promotes the glucose uptake of L6 rat myoblasts through PI3K/Akt/GSK-3βsignaling pathway, so as to improve the sensitivity of insulin in L6 rats muscle cells.

    Release date: Export PDF Favorites Scan
  • Progress of Molecular Targeted Therapy for Thyroid Cancer

    ObjectiveTo review the recent progress of the molecular targeted therapy for thyroid cancer. MethodsThe literatures of molecular etiology for thyroid cancer, mechanism and evaluation of targeted therapy via Medline and CHKD database were reviewed. ResultsSo far, four molecular targeted drugs (Sorafenib, Lenvatinib, Vandetanib, and Cabozantinib) have been approved for treatment of advanced thyroid cancer by FDA. They can mainly improve the patient's progression-free survival. Besides, several new molecular targeted drugs have accomplishedⅠphase or Ⅱ phase clinical trials. These drugs may be new options for treatment of advanced thyroid cancer in the future. ConclusionsMolecular targeted drugs have been the main therapeutic method for advanced thyroid cancer. However, we should invent more effective new drugs and investigate the drug combination to improve the therapeutic effect.

    Release date: Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content