west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "QIAO Aike" 8 results
  • Numerical simulation of the effect of virtual stent release pose on the expansion results

    The current finite element analysis of vascular stent expansion does not take into account the effect of the stent release pose on the expansion results. In this study, stent and vessel model were established by Pro/E. Five kinds of finite element assembly models were constructed by ABAQUS, including 0 degree without eccentricity model, 3 degree without eccentricity model, 5 degree without eccentricity model, 0 degree axial eccentricity model and 0 degree radial eccentricity model. These models were divided into two groups of experiments for numerical simulation with respect to angle and eccentricity. The mechanical parameters such as foreshortening rate, radial recoil rate and dog boning rate were calculated. The influence of angle and eccentricity on the numerical simulation was obtained by comparative analysis. Calculation results showed that the residual stenosis rates were 38.3%, 38.4%, 38.4%, 35.7% and 38.2% respectively for the 5 models. The results indicate that the pose has less effect on the numerical simulation results so that it can be neglected when the accuracy of the result is not highly required, and the basic model as 0 degree without eccentricity model is feasible for numerical simulation.

    Release date:2018-04-16 09:57 Export PDF Favorites Scan
  • Noninvasive numerical simulation of coronary fractional flow reserve based on lattice Boltzmann method

    In order to investigate the application of lattice Boltzmann method (LBM) in the numerical simulation of computed tomography angiography-derived fractional flow reserve (FFRCT), an idealized narrowed tube model and two coronary stenosis arterymodels are studied. Based on the open source code library (Palabos), the relative algorithm program in the development environment (Codeblocks) was improved. Through comparing and analyzing the results of FFRCT which is simulated by LBM and finite element analysis software ANSYS, and the feasibility of the numerical simulation of FFRCT by LBM was verified . The results show that the relative error between the results of LBM and finite element analysis software ANSYS is about 1%, which vertifies the feasibility of simulating the coronary FFRCT by LBM. The simulation of this study provides technical support for developing future FFRCT application software, and lays the foundation for the calculation of clinical FFRCT.

    Release date:2018-08-23 03:47 Export PDF Favorites Scan
  • Influence of valve height on the opening/closure performance of transplanted aortic valve

    Valve transplantation is often used in the treatment of aortic valve insufficiency. However, after surgery, the reconstructed aortic roots have an expansion phenomenon, in which the lack of valve height causes the aortic valve to close again. In this paper, the effects of different aortic valve height design on valve opening and closing performance were studied. The optimal surgical plan was obtained by in vitro numerical simulation, providing technical support and theoretical basis. In this paper, six groups of three-dimensional geometric models with a valve height increment of ± 0.5 mm were established with a root diameter of 26.0 mm and a valve height of 14.0 mm. Through the structural mechanics calculation and analysis of the parameters such as maximum stress, valve area and contact force of the model, reasonable geometrical dimensions are obtained. The study found that the maximum stress values of the six groups of models ranged from 640 to 690 kPa, which was consistent with the results of the literature; the three-group models with valve heights of 13.5 mm, 14.0 mm, and 14.5 mm were within a reasonable range. The contact force value of the 6 groups of leaflets increased with the increase of valve height. Studies have shown that the height of the aortic valve has an effect on the aortic valve closure performance. A valve height that is too small or too large will reduce the aortic systolic valve area and affect the aortic function.

    Release date:2019-04-15 05:31 Export PDF Favorites Scan
  • Effect of sinus diameter on the opening and closing performance of aortic valve under the expansion of aortic root

    This study aims to explore the effect of aortic sinus diameter on aortic valve opening and closing performance in the case of no obvious disease of aortic valve and annulus and continuous dilation of aortic root. A total of 25 three-dimensional aortic root models with different aortic sinus and root diameters were constructed according to the size of clinical surgical guidance. The valve sinus diameter DS is set to 32, 36, 40, 44 and 48 mm, respectively, and the aortic root diameter DA is set to 26, 27, 28, 29 and 30 mm, respectively. Through the structural mechanics calculation with the finite element software, the maximum stress, valve orifice area, contact force and other parameters of the model are analyzed to evaluate the valve opening and closing performance under the dilated state. The study found that aortic valve stenosis occurs when the DS = 32 mm, DA = 26, 27 mm and DS = 36 mm, DA = 26 mm. Aortic regurgitation occurs when the DS = 32, 36 and 40 mm, DA = 30 mm and DS = 44, 48 mm, DA = 29, 30 mm. The other 15 models had normal valve movement. The results showed that the size of the aortic sinus affected the opening and closing performance of the aortic valve. The smaller sinus diameter adapted with the larger root diameter and the larger sinus diameter adapted with the smaller root diameter. When the sinus diameter is 40 mm, the mechanical performance of the valve are good and it can well adapt with the relatively large range of aortic root dilation.

    Release date:2019-12-17 10:44 Export PDF Favorites Scan
  • Structural design and biomechanical numerical analysis of body-fitted stent in stenotic vessels

    To solve the problem of stent malapposition of intravascular stents, explore the design method of intravascular body-fitted stent structure and to establish an objective apposition evaluation method, the support and apposition performance of body-fitted stent in the stenotic vessels with different degrees of calcified plaque were simulated and analyzed. The traditional tube-mesh-like stent model was constructed by using computational aided design tool SolidWorks, and based on this model, the body-fitted stent model was designed by means of projection algorithm. Abaqus was used to simulate the crimping-expansion-recoil process of the two stents in the stenotic vessel with incompletely calcified plaque and completely calcified plaque respectively. A comprehensive method for apposition evaluation was proposed considering three aspects such as separation distance, fraction of non-contact area and residual volume. Compared with the traditional stent, the separation distances of the body-fitted stent in the incompletely calcified plaque model and the completely calcified plaque model were decreased by 21.5% and 22.0% respectively, the fractions of non-contact areas were decreased by 11.3% and 11.1% respectively, and the residual volumes were decreased by 93.1% and 92.5% respectively. The body-fitted stent improved the apposition performance and was effective in both incompletely and completely calcified plaque models. The established apposition performance evaluation method of stent considered more geometric factors, and the results were more comprehensive and objective.

    Release date: Export PDF Favorites Scan
  • Research on the cardiovascular function evaluation system based on noninvasive detection indices

    Based on the noninvasive detection indeices and fuzzy mathematics method, this paper studied the noninvasive, convenient and economical cardiovascular health assessment system. The health evaluation index of cardiovascular function was built based on the internationally recognized risk factors of cardiovascular disease and the noninvasive detection index. The weight of 12 indexes was completed by the analytic hierarchy process, and the consistency test was passed. The membership function, evaluation matrix and evaluation model were built by fuzzy mathematics. The introducted methods enhanced the scientificity of the evaluation system. Through the Kappa consistency test, McNemer statistical results (P = 0.995 > 0.05) and Kappa values (Kappa = 0.616, P < 0.001) suggest that the comprehensive evaluation results of model in this paper are relatively consistent with the clinical, which is of certain scientific significance for the early detection of cardiovascular diseases.

    Release date:2019-08-12 02:37 Export PDF Favorites Scan
  • Review of studies on the biomechanical modelling of the coupling effect between stent degradation and blood vessel remodeling

    The dynamic coupling of stent degradation and vessel remodeling can influence not only the structural morphology and material property of stent and vessel, but also the development of in-stent restenosis. The research achievements of biomechanical modelling and analysis of stent degradation and vessel remodeling were reviewed; several noteworthy research perspectives were addressed, a stent-vessel coupling model was developed based on stent damage function and vessel growth function, and then concepts of matching ratio and risk factor were established so as to evaluate the treatment effect of stent intervention, which may lay the scientific foundation for the structure design, mechanical analysis and clinical application of biodegradable stent.

    Release date:2021-02-08 06:54 Export PDF Favorites Scan
  • Experimental study of the effects of sinotubular junction taper on artificial bioprosthesis valve in pulsatile flow condition

    The aim of the present experimental study is to determine the effects of sinotubular junction diameter on artificial bioprosthesis valves. An experimental study was performed for aortic root models with different sinotubular junction taper under pulsatile flow condition. The sinotubular junction diameters were modified to create four models with different sinotubular junction tapers with 0, 1, 3 and 5 degrees, respectively, using three dimensional printing techniques. After installing the testing bioprosthesis valve on the aortic root models, we conducted experiments of the pulsatile flow testing with different stroke volume in the pulsatile circulation simulation system. The testing condition was set at the pulse frequency of 70 beats/min and the stroke volume of 2–7 L/min. The status of the valves in 10 continuous pulse cycles was tested and the average results were obtained for each stroke volume. The results of testing showed that the mean transvalvular pressure gradients agreed well with the national standard, and all smaller than 10 mm Hg. The sinotubular junction taper had an influence on regurgitation fraction of the artificial bioprosthesis valve. The smaller sinotubular junction taper showed beneficial effect to decrease the regurgitation fraction. In the case of smaller stroke volume, the smaller sinotubular junction taper was beneficial to increase the effective valve orifice area. In the case of larger stroke volume, the larger sinotubular junction taper was beneficial to increase the effective valve orifice area. This study indicates that a doctor should consider the smaller sinotubular junction taper in the case of smaller stroke volume more. In the case of larger stroke volume, the doctor should consider the larger sinotubular junction taper more.

    Release date:2017-06-19 03:24 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content