ObjectiveTo investigate the protection and the corresponding molecular mechanisms of polypyramidine tract binding protein-associated splicing factor (PSF) overexpression on human retinal microvascular endothelial cells (hRMECs) induced by advanced glycation end-products (AGEs).MethodsThe hRMECs were divided into the normal group, the vector group, PSF group, zinc protoporphyrin (ZnPP) group and PSF+ZnPP group for experiment. Cells in the normal group were cultured in a DMEM medium containing 10% fetal calf serum, penicillin/streptomycin, and placed in a closed constant temperature incubator at 37 °C, 95% air, and 5% CO2. Cells in the vector group were infected with empty lentivirus. The cells in the PSF group were infected with overexpressing PSF lentivirus. Cells in the ZnPP group were treated with ZnPP (10 mol/L) for 2 h. The PSF+ZnPP group cells were infected with overexpressing PSF lentivirus, and then pretreated with ZnPP (10 mol/L) for 2 h. With the last four groups of cells stimulated with AGEs, HE, Hoechst33258 staining and flow cytometry were used to observe the protective effect of high expression of PSF on cell damage and the antagonistic effect of ZnPP on PSF. Western blot was used to detect the protein expression of heme oxygenase-1 (HO-1), phosphorylated (p) extracellular regulatory protein kinase (ERK), and Nrf2 in the cells. U0126, a specific antagonist of ERK pathway, was introduced, and Western blot verified the reversal effect of U0126 on the expression of HO-1 induced by PSF protein.ResultsHE staining and Hoechst33258 staining showed that the number of nuclei of damaged cells of PSF group were significantly increased compared with control group, while decreased compared with PSF+ZnPP group (F=27.5, 38.7; P<0.05). The results of flow cytometry showed that the ROS produced by cells in the PSF group was significantly increased compared to the normal group, and significantly decreased compared to the PSF+ZnPP group, the difference was statistically significant (F=126.4, P<0.05). Western blot results showed that HO-1 expression of PSF group was significantly increased compared with control and the vector group (F=70.1, P<0.05). AGEs inducement of 30, 60, 120 and 240 min could significantly improve pERK expression compared with 15 min (F=474.0, P<0.05). The expression of HO-1 and Nrf2 proteins in the PSF+/U0126- group was significantly more than those in the PSF-/U0126- group, the expression of HO-1 and Nrf2 proteins in the PSF+/U0126+ group was significantly lower than that in the PSF+/U0126- group, and the differences were statistically significant (F=30.2, 489.4; P<0.05).ConclusionOver expression of PSF can promote the HO-1 expression by activating ERK pathway and promoting the Nrf2 to the nucleus, thus protect hRMECs against AGEs-induced oxidative damage.
ObjectiveTo observe the protective effect of polypyrimidine bundle-binding protein-related splicing factor (PSF) over-expression on RPE cell injury induced by advanced glycation end products (AGEs).MethodsThe human RPE cells cultured in vitro were divided into three groups: normal control group (N group), blank control group (N + AGEs group), empty vector control group (Vec + AGEs group), and PSF high expression group (PSF + AGEs). group). RPE cells in N group were routinely cultured; RPE cells in N + AGEs group were only transfected but did not introduce any exogenous genes combined with AGEs induction; Vec +AGEs group and PSF + AGEs group were transfected with pcDNA The empty vector or pcDNA-PSF eukaryotic expression plasmid was introduced into RPE cells and induced by AGEs. Except the N group, the other 3 groups of cells were transfected accordingly, and were stimulated with 150 μg/ml AGEs for 72 h after 24 h. HE staining and Hoechst 33258 staining were used to observe the effect of high PSF expression on the morphological changes of RPE cells; ROS level detection was used to analyze the effect of PSF high expression on the ROS expression of RPE cells induced by AGEs; MTT colorimetric method was used to detect the high PSF expression Effects on the viability of RPE cells; Western blot was used to detect the effects of different time and dose of PSF on the expression of heme oxygenase 1 (HO-1).ResultsHE staining and Hoechst 33258 staining observation showed that the cells in group N were full in shape, the nucleus was round, the cytoplasm was rich, and the staining was uniform; the cells in N + AGEs group and Vec + AGEs group were reduced in size, the eosinophilic staining was enhanced, and the nucleus was densely densely stained. Pyrolysis and even fragmentation; the morphology of cells in the PSF + AGEs group was still full, the cytoplasm staining was more uniform, and the nucleus staining was uniform. The results of MTT colorimetry showed that high expression of PSF can effectively improve the viability of RPE cells, but this effect can be effectively antagonized by ZnPP, and the difference is statistically significant (F=33.26, P<0.05). DCFH-DA test results showed that compared with the N + AGEs group and Vec + AGEs group, the ROS production in PSF + AGEs group decreased, the difference was statistically significant (F=11.94, P<0.05). Western blot analysis showed that PSF protein up-regulated HO-1 expression in a time- and dose-dependent manner. The relative expression level of HO-1 at 24, 48, and 72 h after PSF protein was significantly higher than that at 0 h, and the difference was statistically significant (F=164.91, P<0.05). The relative expression level of HO-1 under the action of 0.1, 0.5, 1.0, 1.5, and 2.0 μg PSF protein was significantly higher than 0.0 μg, and the difference was statistically significant (F=104.82, P<0.05).ConclusionPSF may inhibit the production of ROS by up-regulating the expression of HO-1, thus protecting the RPE cells induced by AGEs.