west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Question classification" 1 results
  • A study on multi-class classification of medical questionnaire item texts based on prompt learning

    ObjectiveThe current medical questionnaire resources are mainly processed and organized at the document level, which hampers user access and reuse at the questionnaire item level. This study aims to propose a multi-class classification of items in medical questionnaires in low-resource scenarios, and to support fine-grained organization and provision of medical questionnaires resources. MethodsWe introduced a novel, BERT-based, prompt learning approach for multi-class classification of items in medical questionnaires. First, we curated a small corpus of lung cancer medical assessment items by collecting relevant clinical assessment questionnaires, extracting function and domain classifications, and manually annotating the items with "function-domain" combination labels. We then employed prompt learning by feeding the customized template into BERT. The masked positions were predicted and filled, followed by mapping the populated text to labels. This process enables the multi-class classification of item texts in medical questionnaires. ResultsThe constructed corpus comprised 347 clinical assessment items for lung cancer, across nine "function-domain" labels. The experimental results indicated that the proposed method achieved an average accuracy of 93% on our self-constructed dataset, outperforming the runner-up GAN-BERT by approximately 6%. ConclusionThe proposed method can maintain robust performance while minimizing the cost of building medical questionnaire item corpora, illustrating its promotion value of research and practice in medical questionnaire classification.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content