west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "REN Xiang" 3 results
  • Equivalent modeling and evaluation of molars using point-contact higher kinematic pair based on occlusal dynamic analysis

    As a representative part of the oral system and masticatory robot system, the modeling method of the dental model is an important factor influencing the accuracy of the multi-body dynamic model. Taking the right first molars of the masticatory robot as the research object, an equivalent model, point-contact higher kinematic pair composed of v-shaped surface and sphere surface, was proposed. Firstly, the finite element method was used to analyze the occlusal dynamics of the original model in three static contact cases (intrusive contact, centric occlusion, and extrusive contact) and one dynamic chewing case, and the expected bite force was obtained. Secondly, the Hertz contact model was adopted to establish the analytical expression of the bite force of the equivalent model in three static contact cases. The normal vectors and contact stiffness in the expression were designed according to the expected bite force. Finally, the bite force performance of the equivalent model in three static contact cases and one dynamic chewing case was evaluated. The results showed that the equivalent model could achieve the equivalent bite force of 8 expected items in the static contact cases. Meanwhile, the bite force in the early and late stages of the dynamic chewing case coincides well with the original model. In the middle stage, a certain degree of impact is introduced, but it can be weakened by subsequent trajectory planning. The equivalent modeling scheme of the dental model proposed in this paper further improves the accuracy of the dynamic model of the multi-body system. It provides a new idea for the dynamic modeling of other complex human contacts.

    Release date:2020-10-20 05:56 Export PDF Favorites Scan
  • Stress analysis of the molar with the all-ceramic crown prosthesis based on centric occlusal optimization

    Stress distribution of denture is an important criterion to evaluate the reasonableness of technological parameters, and the bite force derived from the antagonist is the critical load condition for the calculation of stress distribution. In order to improve the accuracy of stress distribution as much as possible, all-ceramic crown of the mandibular first molar with centric occlusion was taken as the research object, and a bite force loading method reflecting the actual occlusal situation was adopted. Firstly, raster scanning and three dimensional reconstruction of the occlusal surface of molars in the standard dental model were carried out. Meanwhile, the surface modeling of the bonding surface was carried out according to the preparation process. Secondly, the parametric occlusal analysis program was developed with the help of OFA function library, and the genetic algorithm was used to optimize the mandibular centric position. Finally, both the optimized case of the mesh model based on the results of occlusal optimization and the referenced case according to the cusp-fossa contact characteristics were designed. The stress distribution was analyzed and compared by using Abaqus software. The results showed that the genetic algorithm was suitable for solving the occlusal optimization problem. Compared with the reference case, the optimized case had smaller maximum stress and more uniform stress distribution characteristics. The proposed method further improves the stress accuracy of the prosthesis in the finite element model. Also, it provides a new idea for stress analysis of other joints in human body.

    Release date:2020-12-14 05:08 Export PDF Favorites Scan
  • Design and performance analysis of elastic temporomandibular joint structure of biomimetic masticatory robot

    Masticatory robots have a broad application prospect in the field of denture material tests and mandible rehabilitation. Mechanism type of temporomandibular joint structure is an important factor influencing the performance of the masticatory robot. In view of the wide application of elastic components in the field of the biomimetic robot, an elastic component was adopted to simulate the buffering characteristics of the temporomandibular joint disc and formed the elastic temporomandibular joint structure on the basis of point-contact high pair. Secondly, the influences of the elastic temporomandibular joint structure (on mechanism degree, kinematics, dynamics, etc.) were discussed. The position and velocity of the temporomandibular joint were analyzed based on geometric constraints of the joint surface, and the dynamic analysis based on the Lagrange equation was carried out. Finally, the influence of the preload and stiffness of the elastic component was analyzed by the response surface method. The results showed that the elastic temporomandibular joint structure could effectively guarantee the flexible movement and stable force of the joint. The elastic joint structure proposed in this paper further improves the biomimetic behavior of masticatory robots. It provides new ideas for the biomimetic design of viscoelastic joint discs.

    Release date:2020-08-21 07:07 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content